Пятьсот тысяч бит с Венеры

We use cookies. Read the Privacy and Cookie Policy

Пятьсот тысяч бит с Венеры

Советский космический аппарат „Венера-9“ открыл новую страницу в исследовании планет Солнечной системы, осуществив телевизионную передачу прямо с поверхности Венеры.

Когда мы называем эти эксперименты фантастическими, непостижимыми, то здесь скорее простая констатация факта, чем литературная гипербола. Вспомните: большая сравнительно машина, размером с автомобиль, быстро удаляясь от Земли, четыре месяца летит в безжизненном океане космоса, точно попадает в плывущую по своей орбите Венеру. И оттуда по линии связи длиной в 70 млн. км гонит на Землю радиограммы и зашифрованные в электрических сигналах картины, которые на самой планете рассматривает бесстрастное электронное око…

Представить себе все это трудно, не хватает воображения. Природа тысячелетиями строгала и шлифовала лучшее свое творение— человека, приспосабливая его к решению совсем иных задач. Песчинка на ладони, камень размером с кулак, на горизонте лес, два дня перехода до ближайшей реки — вот те масштабы, которые мы получили в наследство от своих предков, которыми привыкли мыслить. А тут на наш мозг обрушивается одно за другим: «…миллиард световых лет… записано в структуре белка… наносекунда… мягкая посадка на Венеру… линия связи длиной 70 млн. км… квантовый переход…» — не успеваешь отдать дань восхищения одному открытию или свершению, как нужно привыкать к новым словосочетаниям, и просто не хватает времени осмыслить их, задуматься, поинтересоваться подробностями. А ведь бывает, что несколько подробностей лучше всего другого помогают нам прорисовать новый сложный фрагмент в картине мира.

Автоматическая станция «Венера-9», большая сравнительно машина (масса 4936 кг), быстро удаляется от Земли (начальная скорость удаления 11 км/ с; двигаясь с такой скоростью, из Москвы в Ленинград можно добраться за 1 мин и за 3 мин в Ташкент). До этого был космодром, огромная ракета, бесконечные проверки и испытания, торжественность и напряженность старта, несколько минут активного полета, завершившегося выводом станции на близкую околоземную орбиту. И уже с этой орбиты после еще одного комплекса проверок, тщательного прицеливания и точного выбора момента — окончательный разгон последней ступени, решающий выстрел. Но не в Венеру, а совсем в другую сторону.

Почему?

Существует много разных маршрутов, по которым космический аппарат может попасть с Земли на Венеру (рис. 1–3 на цветной вклейке, примыкающей к с. 113). Естественней всего, казалось бы, просто упасть на планету (рис. 1). Для этого нужно нейтрализовать скорость V?з, которую аппарат имеет, двигаясь вместе с Землей (орбитальная скорость Земли — 29,76 км/с), и одновременно сообщить ему скорость V?с в направлении на Солнце. Тогда аппарат, преодолев земное притяжение и падая на Солнце, встретится с Венерой в месте, где ее орбита пересекается с прямолинейной (а потому кратчайшей) траекторией аппарата. В этом варианте время перелета может составлять всего 25 сут, протяженность маршрута — 42 млн. км. Однако же у такого кратчайшего маршрута есть свои недостатки, и по крайней мере с одним из них трудно не считаться — аппарату необходимо сообщить начальную скорость 31,8 км/с, а такие скорости ракетной технике пока недоступны.

Из всех слов, какими пользуются специалисты при обсуждении вариантов космического эксперимента, самое весомое — масса. За массу полезного груза приходится платить массой стартовой ракеты, при этом цена за килограмм зависит и от выбора космической трассы: если выбрать трассу, на которую ракета выходит с большим расходом топлива, то на долю аппарата достанется малая доля общей массы, его придется делать небольшим и легким. А если выбрать экономичную трассу и топлива понадобится немного, то сэкономленную массу можно будет передать в фонд аппарата.

При запуске на Венеру массу, выведенную на околоземную орбиту, приходится делить между самим межпланетным аппаратом и последней ступенью ракеты, которая с околоземной орбиты окончательно разгоняет аппарат. Самый выгодный вариант такого последнего выстрела, т. е. вариант с минимальным расходом топлива, а значит, с максимальной полезной массой, выглядит так: разгоняя аппарат, его направляют с таким расчетом, чтобы он не спеша летел по сложной кривой, приближаясь к орбите Венеры (рис. 2), а планета тем временем сама подходит к месту встречи. Основные данные полета: длина пути — 600 млн. км, время полета — 6 месяцев. На практике таким экономичным вариантом никогда не пользовались — полет тянется очень долго. А из-за этого затрудняется точное попадание в цель, возрастает вероятность всяких дорожных неприятностей, скажем, встречи с микрометеоритами или повреждения электронных приборов случайными вспышками космического излучения. Кроме того, в момент посадки аппарата на Венеру она будет на расстоянии 90 млн. км от Земли, а с ростом расстояния все труднее создавать надежную линию радиосвязи.

Скрупулезное взвешивание всех «за» и «против» приводит к некоторым компромиссным вариантам полета (рис. 3), которые, правда, ближе к последнему, самому выгодному, чем к первому, самому короткому. Основные данные промежуточных маршрутов: время полета — около 4 месяцев, протяженность примерно 360 млн. км, расстояние Земля — Венера в момент посадки около 70 млн. км. По таким маршрутам летали к Венере все советские межпланетные станции, в том числе и «Венера-9», и «Венера-10», впервые передавшие на Землю изображение поверхности планеты.

Долгие месяцы перелета для автоматической станции — это вовсе не зимняя спячка. Станция живет, работают многие ее системы. В частности, по сигналам датчиков температуры включаются и выключаются бортовые вентиляторы обдува, открываются и закрываются заслонки воздуховодов системы терморегулирования, поддерживая температуру около 20 °C. Один из непрерывно включенных дежурных приемников готов в любую минуту принять сигналы с Земли, расшифровать их, передать на командный пункт станции, в блок управления. В блок памяти записываются показания многочисленных научных приборов, данные от системы астронавигации, сведения о том, что происходит на самой станции. Во время очередного сеанса связи вся эта информация может быть передана на Землю. В нужный момент по собственной программе или по командам с Земли начинает действовать в одном из своих режимов система ориентации. Всматриваясь приборами астронавигации в свет небесных маяков, станция определяет свое место в звездном мире, положение в пространстве. С ювелирной точностью производится коррекция орбиты — станция крепко держит невидимую тропу, ведущую к Венере.

Еще вчера такие слова, как «астронавигация», «ориентация в космосе», «коррекция орбиты», загадочно произносили лишь самые образованные герои фантастических романов. Сегодня они в словарях, рассчитанных на школьника: нужно обязательно иметь представление обо всем этом, чтобы почувствовать, какая гигантская работа стоит за этим привычным теперь термином «космический полет».

Вот некоторые типичные режимы межпланетной станции на трассе перелета. Основной режим ПСО — постоянной солнечной ориентации (рис. 8), режим, при котором солнечные батареи направлены на Солнце, станция кормится его бесплатной энергией и пополняет свои энергетические запасы, подзаряжает аккумуляторы.

За соблюдением режима ПСО следит датчик Солнца, его можно представить себе как систему фотоэлементов с объективом (рис. 4, 5 цветной вклейки), этакий многоглазый фотоэкспонометр. При правильной ориентации солнечных батарей этот датчик направлен точно на Солнце, все его фотоэлементы одинаково хорошо видят солнечный диск и дают одинаковый ток. Но стоит только станции чуть отвернуться от Солнца, как равенство токов нарушается. И тут же в электронном блоке управления, куда сходятся токи от всех фотоэлементов, будет выработан сигнал поправки. А он включит нужные холодные реактивные микродвигатели (их основа — небольшой баллон со сжатым газом), и они вернут станцию на место.

По мере того как станция уходит от Земли, режим ПСО (ориентация только в одной плоскости, по одной оси) перестает устраивать радистов, им уже нужно, чтобы передатчики станции могли поддерживать связь с Землей через остронаправленную антенну. Эта антенна не разбазаривает радиоволны по всему свету, она излучает их узким пучком, напоминающим луч прожектора. А за этим стоит эффективное использование мощности бортового передатчика на больших расстояниях от Земли и, значит, возможность уменьшить массу самого передатчика, системы его питания.

Чтобы радиолуч остронаправленной антенны попал точно в Землю, станция по команде с Земли переходит из режима ПСО в режим ПСЗО — постоянной солнечно-звездной ориентации. Солнечные батареи по-прежнему нацелены на Солнце, но в плоскости этих батарей станция занимает уже не произвольное, а строго определенное положение. Его поддерживает второй оптический датчик — датчик звезды, который «держит» свою, разумеется, заранее назначенную ему звездочку, подобно тому как солнечный датчик «держит» диск Солнца. У режима ПСЗО есть одна тонкость — станция и Земля непрерывно движутся относительно Солнца, и при этом меняются углы между направлениями на Землю, на Солнце и на звезду. Приходится по ходу полета подправлять «точку зрения» датчиков с таким расчетом, чтобы остронаправленная антенна во всех случаях смотрела точно на Землю.

Но вот наступает момент, когда прерывается режим ПСЗО и производится одна из самых ответственных и сложных операций— коррекция орбиты. Уже точно измерены координаты станции и ее скорость, точно вычислено, в какую сторону и на сколько нужно подтолкнуть станцию, чтобы она не сходила с тропы. За дело берется сложный комплекс автоматики, в котором невидимые нити радиолучей связывают в одно целое бортовую аппаратуру и наземную. Станцию разворачивают в расчетное положение, на расчетное время включают мощный реактивный двигатель и, контролируя приращение скорости, точно отмеряют расчетную дозу ускорения. А когда коррекция закончена, особая система, которая запомнила, в каком положении станция находилась до разворота, возвращает ее в режим ПСЗО.

К этим крайне упрощенным описаниям стоит, наверное, добавить, что в системах ориентации, навигации и коррекции четко взаимодействуют многие приборы, элементы, блоки, что простая на первый взгляд операция, скажем, переход с малонаправленной антенны на остронаправленную, возвращение станции в режим ПСЗО или сеанс связи с Землей, — это длинная цепочка «включилась», «выключилась», «принято», «сработало», «проверено», каждое из которых должно выполняться четко, своевременно, надежно. И еще: за время полета станций «Венера-9» и «Венера—10» с ними было проведено более ста сеансов связи, на каждой станции прошли две коррекции и в заданный срок станции прибыли в заданный район — в район Венеры. О последних этапах полета межпланетных станций к Венере и их посадке на планету рассказывает доктор технических наук В. Е. Ишевский:

— Если можно, Валентин Евграфович, расскажите, пожалуйста, о том, из чего складывалось это волнующее событие — прибытие станции на Венеру…

— Здесь, пожалуй, целая цепочка волнующих событий, растянутых во времени на несколько дней. Началом, наверное, можно считать припланетную коррекцию со всеми ее сложными и ответственными слагаемыми: точным определением необходимого импульса, разворотом станции, ее стабилизацией, включением двигателя, проверкой изменения вектора скорости, возвращением станции в режим ПСЗО. Затем следует разделение станции на две самостоятельные части: спускаемый аппарат СА и орбитальный аппарат ОА (рис. 6 цветной вклейки). Происходит отстрел СА, он отходит от ОА, и какое-то время оба аппарата летят рядом по так называемой попадающей траектории. Она ведет к поверхности планеты.

Спускаемый аппарат СА так и остается на этой траектории, а на орбитальном аппарате ОА в определенный момент основной двигатель осуществляет маневр увода — ОА уходит на пролетную траекторию, т. е. такую, которая идет мимо планеты. Затем на расстоянии 1500 км от планеты еще одно включение двигателя, разумеется, после разворота и точной ориентации в пространстве, и ОА, оправдывая свое название, переходит на вытянутую эллиптическую орбиту ИСВ — искусственного спутника Венеры.

А тем временем спускаемый аппарат, продолжая падать на планету, входит в верхние слои атмосферы, начинается сложный цикл спуска и посадки. В атмосферу планеты СА входит со скоростью около 11 км/ с, в привычных, житейских единицах это почти 40 000 км/ч. Из-за такой высокой скорости и еще из-за высокой плотности атмосферы на спускаемый аппарат сразу же обрушиваются огромные механические и тепловые нагрузки…

— Какие цифры стоят за этим словом «огромные»?

— Плазма, окружающая аппарат во время его движения в верхних слоях атмосферы, имеет температуру 10 000 °C… Механическая нагрузка на лобовую часть СА превышает «земной» вес десятка железнодорожных вагонов. Еще одна цифра: за счет естественного торможения в атмосфере скорость СА довольно быстро снижается почти в 50 раз… И когда она достигает примерно 900 км/ч, бортовая автоматика начинает второй этап торможения — с помощью парашютных систем.

— Все эти огромные нагрузки, очевидно, ставят немало сложных задач перед конструкторами.

— Конечно… Но это далеко не все сложные задачи. Первые перегрузки кратковременны, они длятся секунды. А нужно еще, чтобы аппарат довольно долго и надежно работал на поверхности Венеры, где атмосферное давление около 90 атм (9 МПа), почти как на километровой глубине в океане. Такое давление продавит крышу легкового автомобиля, если даже сделать ее из листа стали толщиной в несколько сантиметров. А температура на поверхности планеты около 500 °C, при такой температуре алюминий становится мягким, как воск, и, конечно же, плавятся свинец и олово.

Для сложной бортовой аппаратуры это нетерпимая жара. (Загляните в радиотехнический справочник — даже кремниевые полупроводниковые приборы, которые слывут чемпионами по термостойкости, больше 150 °C терпеть не могут, да и то в области высоких температур их параметры сильно ухудшаются.) Вот почему на СА задолго до посадки начинается борьба за то, чтобы замедлить нагревание бортовой аппаратуры, отодвинуть, если можно так сказать, ее тепловую смерть.

Еще во время полета в космосе СА сильно охлаждают, создают минусовую температуру в приборном отсеке. На самой поверхности планеты внутри СА начинают действовать вентиляторы, которые вместе со специальными теплопоглотителями делают все возможное, чтобы ответственные узлы аппаратуры нагревались в самую последнюю очередь. Внешняя и внутренняя теплоизоляция, конечно, тоже играет не последнюю роль. И все это только одна сторона дела, одна группа задач. Нужно еще аккуратно затормозить спускаемый аппарат, мягко посадить его, обеспечить устойчивость даже в том случае, если СА сядет на склон горы… Список этот можно продолжить, но, думаю, важнее сказать другое: все конструкторские задачи — только часть большого комплекса проблем, решенных специалистами по двигателям, астронавигации, ориентации, корректированию орбит, динамике полета, радиосвязи, баллистике, бортовой автоматике, по научным исследованиям, ради которых и осуществляется эксперимент.

При каждом успехе космических автоматов мы вспоминаем главного конструктора, члена-корреспондента Академии наук Георгия Николаевича Бабакина, Героя Социалистического Труда, лауреата Ленинской премии. Он возглавлял конструкторское бюро, где были созданы многие космические автоматы, в том числе и те, что исследовали Венеру. Он возглавлял это конструкторское бюро и заложил основы, сформировал стиль, техническую политику, идеологию — словом все, что в итоге дало прекрасные результаты в исследовании космоса с помощью автоматов.

В исследованиях Венеры пройден большой путь, начало которому было положено еще Сергеем Павловичем Королевым, — первое попадание в планету («Венера-3», 1966), первый парашютный спуск и непосредственные измерения в атмосфере («Венера-4», 1967), спуск и измерения до высоты 20 км от поверхности («Венера-5», «Венера-6», 1969), первая передача научной информации с поверхности планеты («Венера-7», 1970), передача с дневной, т. е. обращенной к Солнцу, стороны планеты («Венера-8», 1972). И наконец, созданные с учетом всего предыдущего опыта станции «Венера-9» и «Венера-10», которые многим отличаются от своих предшественниц, в частности технологией спуска в атмосфере планеты…

— Рассказывая о прибытии «Венеры-9» на Венеру, вы подошли к тому моменту, когда должны вступить в строй парашютные системы…

— Парашютов на станции несколько. Первым появляется небольшой вспомогательный парашют — после отстрела верхней крышки теплозащитной оболочки (ТО) он уводит ее от аппарата (рис. 7 цветной вклейки). Позже будет произведен отстрел нижней крышки этой оболочки..

— Многие читатели, наверное, захотят узнать, что такое «отстрел»…

— Это тот счастливый случай, когда термин не требует перевода и точно отражает суть дела. Для того чтобы отделить и оттолкнуть одну часть аппарата от другой, как правило, используется пиротехнический заряд — сокращенно пирозаряд, это может быть небольшой цилиндр с некоторым подобием порохового заряда, с поршнем и толкателем. По соответствующей команде электрический импульс зажигает заряд, создается очень высокое давление, сила давления выталкивает поршень, и он производит необходимую работу. Например, отделяет СА от ОА, отбрасывает крышку теплозащиты. Кстати, на высоте около 50 км отстреливается основной парашют и скорость спуска СА начинает нарастать…

— А для чего это делается?

— Из парашютов самого СА первым раскрывается тормозной, он снижает скорость спуска до 50 м/с, т е до 180 км/ч. Начинает работать бортовой передатчик, и с трассы спуска идет научная информация на орбитальный аппарат (ОА). А с него — прямо на Землю. Через какое-то время раскрывается основной трехкупольный парашют общей площадью 180 м2 СА совсем уже медленно проходит один из самых интересных участков полета — слой облаков После этого медленный спуск не представляет особого интереса для ученых, а лишнее время лететь в жаркой атмосфере — это значит поднять температуру ОА и тем самым сократить возможное время его работы на поверхности планеты. Вот почему основной парашют отстреливает и СА начинает опускаться значительно быстрее, притормаживаясь только за счет особого жесткого зонтика, как принято говорить, за счет аэродинамического торможения Весь режим спуска СА имеет еще одну важную особенность — он должен быть синхронизирован с полетом ОА. Во время посадки СА орбитальный ретранслятор, установленный на ОА, должен находиться на таком участке своей орбиты, с которого можно перебросить надежный радиомост от СА на Землю. Как известно, именно таким четким взаимодействием СА и ОА завершились полеты «Венеры-9» и «Венеры-10», и они передали на Землю огромное количество информации.

Хотя информация и правит миром, однако она не вошла еще в школьные учебники, и единица количества информации — бит — пока не заняла своего законного места рядом с ваттами, метрами, амперами. Не кто иной, как связисты, первыми научились измерять информацию, да и само это слово в нынешнем его звучании пришло из теории связи. Трудный вопрос о полезности, о ценности сообщений остался в стороне, бесстрастной мерой информации стало количество простейших электрических сигналов-импульсов, необходимое для передачи слов, текстов, картинок независимо от их содержания Самая мелкая мера — один бит, один импульс или пауза, одно «да» или «нет» Если в алфавите 32 буквы, то для передачи каждой из них нужна определенная комбинация из 5 импульсов или пауз, из 5 «да» или «нет». И значит, количество информации в одной букве — 5 бит. В слове «сон» 3 буквы, т. е 15 бит, в слове «теплопроводность» 16 букв, оно содержит информацию 80 бит В шахматной доске 64 бит — 64 черных («да») или белых («нет») клеточки. В странице машинописного текста приблизительно 10 тыс. бит, в газетной фотографии — тысяч двести — триста, в пятиминутном разговоре — нисколько миллионов бит.

Избалованные легкостью получения информации, килобитами и мегабитами, которые приходят к нам с телевизионного экрана, из радиоприемника или по телефонному проводу, мы редко интересуемся ценой, которую платят за все это связисты А платят они немало, причем двумя видами валюты — секундами и герцами, временем передачи и полосой частот, которую нужно пропустить по каналу связи. (Полоса частот телевизионного сигнала — 6 МГц, полоса частот телефонного разговора примерно 3 кГц. Представление о полосе частот становится понятней, если вспомнить клавиатуру рояля: играя в пределах одной средней октавы, мы излучаем полосу частот примерно 400 Гц, играя на всей клавиатуре — около 4000 Гц.) Причем валюта — герцы и секунды — принимается в любой пропорции, важна лишь общая сумма: чем меньше времени отводится на передачу информации, тем шире должен быть пропускаемый спектр, и наоборот, чем более узкая полоса передается, тем дольше идет передача. Телеграмму в 1000 бит можно передать за 1 с, при этом линия связи должна будет пропустить полосу частот в 4000 Гц. А можно ограничиться полосой в 2–3 Гц, но тогда передавать телеграмму придется очень медленно — что-то около получаса. После такого предисловия мы можем вернуться на поверхность Венеры, куда только что спустился СА, и теперь уже со знанием дела отметить: время жизни спускаемого аппарата на поверхности ограничено; поэтому, чтобы передать с него большой объем информации, нужно передавать ее очень быстро, а значит, нужно, чтобы линия связи Венера — Земля пропускала широкую полосу частот.

Нужно-то оно, конечно, нужно, но только можно ли…

Главное препятствие для расширения полосы частот — огромная протяженность линий космической радиосвязи, эти бесконечные миллионы километров. Мощность, которая приходит от передатчика к приемнику, убывает с квадратом расстояния между ними. Именно с квадратом — расстояние увеличивается в 2 раза, мощность сигнала, доставшегося приемнику, уменьшается в 4 раза, расстояние растет в 1000 раз, мощность падает в миллион раз. От одного и того же передатчика с Венеры придет сигнал в 40 000 раз более слабый, чем с Луны, потому что от Земли до Венеры в 200 раз дальше, чем до Луны.

Мощность передатчика на космическом аппарате ограничена (все та же масса!), и практически мощность сигнала, принимаемого на Земле из района Венеры, измеряется триллиардными долями миллиардной доли ватта. Принять такой сигнал примерно то же самое, что, находясь в Москве, услышать писк комара, совершающего вечернюю прогулку где-нибудь в районе Мурманска. Казалось бы, ничего страшного в этом нет, электроника давно умеет усиливать слабые сигналы, даже в рядовом транзисторном приемнике на пути от антенны до громкоговорителя сигнал усиливается в миллионы раз. Кто же помешает усилить любой, самый слабый сигнал, который приходит с межпланетной станции на Землю?

Помешают помехи, шумы, как их называют радисты. Это «радиосигналы», рожденные хаотическим движением электронов в самой антенне приемника, радиоизлучением Солнца, Галактики, далеких звезд. Уровень всех этих шумов невелик, мы не сталкиваемся с ними, слушая земные радиостанции или телецентры. Но чрезвычайно слабый сигнал с далекой космической станции может просто утонуть в шумах, потеряться в них, как шепот на шумной улице. Усиление в этом случае не имеет никакого смысла — вместе с сигналом усиливаются шумы.

Проблема выделения слабых сигналов из шума — одна из центральных в современной радиотехнике. В числе методов, облегчающих ее решение, самый радикальный — хирургия, сужение частотного спектра сигнала. Чем уже частотные ворота канала связи, тем меньше мощность попавших в него шумов и из них легче выделить полезный сигнал.

Итак, конфликт: с одной стороны, чтобы выделить слабый сигнал из шумов, он должен быть узкополосным, с другой стороны, с помощью узкополосного сигнала много информации не передать. И разрешение конфликта, неожиданное и смелое, — орбитальный ретранслятор. Теперь от установленного на СА сравнительно маломощного передатчика на приемник орбитального аппарата придет довольно сильный сигнал — идти недалеко, какие-то тысячи километров. Не миллионы. И можно не бояться шумов, вести передачу в сравнительно широкой полосе частот. А на ОА стоит уже значительно более мощный передатчик, снабженный к тому же остронаправленной антенной (СА неподвижен, а ОА можно крутить как угодно, направляя антенну на Землю).

Поэтому от ОА на Землю опять-таки приходит сигнал значительно более сильный, чем приходил бы от самого СА. Все это, вместе взятое, дает самый важный эффект — резко, во много сотен раз может быть расширена полоса частот, пропускаемых каналом связи. (Предлагается такое сравнение: прямая передача с Венеры — это возможность услышать две-три соседние клавиши рояля, а ретрансляция — многозвучные аккорды, охватывающие несколько октав.) Ну а если расширяется частотный спектр сигнала, то, значит, возрастает объем информации, которую можно передать с Венеры. Возрастает объем того самого бесценного продукта, из-за которого и затевалась вся эта сложная экспедиция на Венеру.

Весь объем информации, которую можно было передать с поверхности планеты, разделили между несколькими потребителями — коммутатор поочередно подключал к передатчику СА разные научные приборы. Но основная часть этого объема, основное время работы канала связи было ассигновано главному научному результату — простому человеческому «увидел»! Об этом завершающем аккорде всего эксперимента рассказывает доктор технических наук А. С. Селиванов:

— Очень хотелось бы, Арнольд Сергеевич, представить себе аппаратуру, которой была доверена съемка Венеры…

— Прежде всего, наверное, нужно сказать, что съемки в общепринятом смысле этого слова не было. Иногда космические автоматы действительно прежде всего фотографируют объект, а затем уже по линии радиосвязи передают изображение на Землю. В данном случае такой необходимости не было. Изображение воспринималось фотоэлектронным прибором, установленным на СА, тут же преобразовывалось в серии электрических сигналов, которые через ОА сразу же передавались на Землю (рис. 9). Ну а там уже из этих сигналов воссоздавалась картинка…

— То есть обычная телевизионная передача…

— Скорее фототелеграфная. Во-первых, картинка передавалась медленно, на один кадр ушло почти полчаса. Во-вторых, в системе не было обязательного телевизионного атрибута — передающей электронно-лучевой трубки. Ее роль взяла на себя камера с механической разверткой.

Как известно, в передающей телевизионной трубке изображение проецируется на светочувствительный экран так, как, скажем, оно проецируется на пленку или на пластинку в фотоаппарате. Светочувствительный экран — это огромное множество мельчайших фотоэлементов, и на каждом из них под действием световой картинки появляется свой электрический заряд. Этап заряд тем больше, чем выше освещенность данной точки. Острый электронный луч трубки поочередно обегает все фотоэлементы, «считывает» заряд, и картинка оказывается зашифрованной в меняющемся токе луча. Это называется разверткой изображения, превращением его в телевизионный сигнал.

В камере с механической разверткой тоже создается электрическое описание картинки, но уже иным способом. В такой камере всего один фотоэлемент, точнее, фотоэлектронный умножитель — ФЭУ. Луч к нему приходит через объектив и очень малое отверстие в диафрагме. В итоге ФЭУ видит только одну точку картинки. Но с помощью подвижного зеркала (его быстро покачивает кулачок, вращаемый двигателем), установленного на поворотной платформе, камера постепенно, точку за точкой, осматривает весь объект.

— А что заставило отказаться от электронного телевидения в пользу механического?..

— Мне бы не хотелось так ставить вопрос… Система все-таки в основном электронная: сам ФЭУ, его питание, усилители и преобразователи сигнала, синхронизация вращения двигателя высокостабильной опорной частотой — все это чистая электроника. Что же касается механической развертки, то в ее пользу есть немало аргументов.

— Какие же?..

— Система с механической разверткой — такие системы теперь часто называют сканерами — это прежде всего очень точный измерительный прибор с равномерной чувствительностью и четкостью по всему кадру. Весь кадр осматривается одним и только одним светочувствительным элементом — ФЭУ, диафрагма вырезает луч, который всегда проходит через центр объектива. В такой системе огромная панорама получается одним росчерком пера, ее не нужно склеивать из кусочков. А автоматическая регулировка усиления позволяет скомпенсировать неодинаковую освещенность объекта. К тому же при медленной передаче картинки электронная развертка просто не имеет смысла — теряется главное ее достоинство — ее безынерционность.

В свое время приходилось доказывать, что сканеры незаменимы для многих систем космического телевидения. Сейчас как будто уже никто не спорит… Сканеры к тому же делом доказали свои достоинства. Вспомним нашу станцию «Луна-9», которая первой совершила мягкую посадку на Луну, передала на Землю первые лунные панорамы. Они были сделаны с помощью сканеров, таких же примерно, какие затем работали на других «Лунах», на «Луноходах», «Марсах» и «Венерах». Кстати, наши американские коллеги, которые всегда отдавали предпочтение чисто электронным аппаратам, на своих последних машинах, на марсианских «Викингах», тоже установили сканеры с механической разверткой. И видимо, не жалеют об этом — «Викинги» передали на Землю много прекрасных марсианских панорам.

— В свое время с советской станции «Марс-5» был получен цветной снимок Марса. Какой аппаратурой он сделан?

— Вот здесь действительно планета сначала фотографировалась, пленка на борту проявлялась и затем картинка считывалась сканером. Были отсняты десятки кадров, некоторые снимались через разноцветные светофильтры, и из них был синтезирован цветной снимок. На «Марсах» стояли и другие телевизионные системы. В частности, сканер без горизонтальной развертки, ее заменило само движение станции над планетой. Такая система, кстати, была установлена на «Венерах», она дает изображение облачного слоя планеты. Телевизионный сигнал может сразу же передаваться на Землю, а может записываться на магнитофон и передаваться в другое, более удобное время, или передаваться повторно. На магнитофон можно записать также и сигналы, полученные со спускаемого аппарата.

— Какой объем информации был передан на Землю для воспроизведения каждого венерианского ландшафта?..

— Примерно 500 тысяч бит…

— Довольно много… Это эквивалентно телеграмме в 5— 10 тысяч слов…

— Большой объем информации, который нужно передать, — это плата за четкость. Сканер прошел по «картинке» более 500 строк, в каждой строке было 128 элементов, вся картинка сложилась примерно из 70 000 точек. И не просто черных и белых, как на чертеже, а имеющих разные градации яркости, как в телевидении или фотографии. Была предусмотрена передача 64 яркостных градаций, и таким образом на передачу каждой точки уходило 6 бит плюс еще один, так называемый служебный бит для синхронизации. Как видите, за передачу картинки приходится щедро платить — 500 тысяч бит — цена немалая. Но и полезной информации в картинках очень много. С полученными ландшафтами Венеры работают специалисты по геологии планет, по их происхождению. И те, кто готовит следующие полеты… Таким образом, полученную с Венеры информацию можно смело считать важным научным результатом.

К важным научным результатам, которые принесли на Землю эти тысячи бит телевизионных сигналов, нужно добавить еще один, ему вообще нет цены — мы видели Венеру.