Инженерия невидимых машин

We use cookies. Read the Privacy and Cookie Policy

Инженерия невидимых машин

Физики и химики в мельчайших подробностях представляют себе устройство многих машин микромира — молекул и атомов. Изучены, например, молекулы, которые меняют свою структуру и двигаются по определенным маршрутам, выполняя ватную работу „грузовиков“ в живом организме. Делаются попытки объяснить, почему все организмы построены только из „левых“ молекул. Открыты совершенно удивительные особенности поведения молекул при сверхнизких температурах.

Как известно, доктор Лэмьюэль Гулливер появился в сказочной Лилипутии в те времена, когда страна эта еще не очень далеко продвинулась по пути технического прогресса. Во всяком случае, самые просвещенные лилипуты со страхом и трепетом дикарей рассматривали огромные загадочные машины, обнаруженные у «человека-горы», — пистолет и карманные часы.

А попробуем представить себе другую картину: прямо из свифтовской Англии (парусный флот, дилижансы, кремневые ружья и несколько десятилетий до первой паровой машины Уатта) Гулливер попадает в страну лилипутов, где наука и техника находятся уже на современном нам уровне (спутники, телевидение, массовое производство автомобилей, телефон, кино, карманные приемники, самолеты). Путешественник ошеломлен бушующей вокруг него машинной вакханалией, и только бескомпромиссный рационализм хирурга уберегает его от мистики: Гулливер упрямо верит, что во всех чудесах Лилипутии нет никакого чуда. Более того, он пытается понять устройство и принцип действия лилипутских машин.

Но как это сделать? Каким образом проникнуть в поющую человеческим голосом черненькую коробочку размером с рисовое зерно или в небольшой металлический кубик, который, глотнув какой-то желтоватой жидкости, лихо мчит многоместные кареты по зеркальным лентам лилипутских дорог? Непонятные процессы… Невидимые детали… Непостижимая сложность…

Эта фантастическая картина в некоторой степени иллюстрирует проблемы, занимающие современных ученых, исследователей невидимого мира атомов и молекул. «В некоторой степени» потому, что задачи, которые стоят перед исследователями микромира, бывают намного сложнее, чем, скажем, разборка лилипутского мотоцикла грубыми гулливеровыми руками.

И дело не только в чрезвычайной малости машин-молекул, не только в огромном количестве деталей, работающих в таких машинах. Детали эти еще сложным образом взаимодействуют друг с другом, а главные их характеристики могут сильно меняться. Типичный случай: одинаковые атомы одинаковы только в изолированном состоянии, попав в молекулу, они могут стать совершенно непохожими. Атомы, как известно, объединяются в молекулы общими электронными оболочками, которые притягивают, привязывают друг к другу несколько ядер. В молекуле, в этом коллективе, для повышения общей устойчивости может произойти перераспределение личной собственности отдельных атомов — их зарядовой плотности, т. е., грубо говоря, реального заряда внешних электронных оболочек. Так, у атома водорода в свободном состоянии заряд электронной оболочки равен единице (вокруг ядра вращается один электрон, весь его заряд привязан к собственному ядру), а в молекулах в зависимости от того, с кем и как связан водород, его заряд может иметь самые разные значения — от 0,5 до 1,5.

Распределение зарядовой плотности в молекулах сильнейшим образом влияет на их химические свойства. Именно сильнейшим образом: перераспределение плотности заряда в пределах всего лишь нескольких процентов может в десятки, в сотни тысяч раз изменить химическую активность вещества. И чтобы представить себе, как работает молекула, как именно она участвует в тех или иных химических процессах, нужно знать, образно говоря, ее электрическую схему.

Но это еще не все. Еще нужно знать архитектуру молекулы, точные расстояния между атомами, точные углы между соединяющими их условными линиями. Нужно знать, как происходят конформационные изменения молекул — практически любая молекула может существовать в нескольких похожих архитектурных вариантах, как принято говорить, может находиться в нескольких конформациях и при этом довольно часто переходить из одной конформации в другую. Нужно иметь все эти сведения для всех типов взаимодействующих молекул и для молекул среды, где происходят взаимодействия. Нужно знать, как зависят характеристики молекул от «природных условий», и прежде всего от температуры. Нужно уметь мужественно встречать неожиданности и непривычности, объяснять факты, которые противоречат житейскому опыту и здравому смыслу, такие, скажем, как квантовые переходы электронов, их прыжки с одной орбиты на другую, минуя промежуточные положения (Гулливер в жизни не встречал машины сложнее часов, а должен разобраться в устройстве лилипутского цветного телевизора). Одним словом, необходимо пройти через многие трудные «нужно», чтобы понять, как устроены и как работают машины-молекулы.

Несмотря на все трудности, современные Гулливеры от физики и химии добились поразительных результатов в изучении сложных молекулярных структур и их взаимодействий. Вот несколько таких результатов в коротком и вольном пересказе, несколько примеров из многих возможных.

Примеры эти взяты из статей в научных журналах, и в конце каждого нашего рассказа названы авторы работы и ее официальное название.

Пример первый — молекула-самосвал. Скелетная схема молекулы антибиотика валиномицина очень напоминает цветок. В центре — ион калия (К+), его удерживают шесть «натертых шерстью янтарных палочек» — шесть электрических диполей, отростков молекулы, на концах которых сконцентрирован некоторый отрицательный заряд. Такая схема валиномицина соответствует случаю, когда молекула находится в среде со сравнительно высокой концентрацией положительных ионов, в частности ионов калия. Но стоит валиномицину перейти в другую среду, с меньшей концентрацией зарядов, как «цветок» раскроется — у молекулы появится возможность завязать прочные внешние связи, и для этого она пожертвует некоторыми своими внутренними межатомными связями. В итоге произойдет перераспределение электрического заряда в молекуле, исчезнут диполи, удерживавшие ион калия, и он вырвется на свободу. Но когда валиномицин вернется в прежнюю среду, то он вернется и к своей прежней конформации и снова сможет удерживать ион калия, втянув его в центр «цветка» прямо «с улицы».

Подобная конформационная перестройка валиномицина — это не просто виртуозные гимнастические упражнения. Валиномицин — грузовик, он перевозит ионы калия через клеточную мембрану, активно участвуя тем самым в жизнедеятельности клетки, участвуя в таинстве жизни. Хотя сам он, конечно, не более чем транспортная машина, машина-молекула. (Определение конформационной перестройки валиномицина. Академик Ю. А. Овчинников с сотрудниками. Институт биорганической химии им. М. М. Шемякина АН СССР.)

Пример второй — левые и правые машины. «Киральность» — термин старый, однако, кажется, еще не устоявшийся, иногда вместо него пользуются терминами «спиральность», «закрученность», «ручность». Введены эти термины для того, чтобы подчеркнуть, что два совершенно одинаковых, казалось бы, объекта могут иметь особые пространственные различия, быть как бы зеркальными отражениями друг друга. Могут, как принято говорить, иметь разную киральность. У человека две одинаковые руки разной киральности — правая и левая. Здороваясь, мы протягиваем друг другу руки одинаковой (правой) киральности.

Совершенно одинаковые по всем статьям молекулы также могут иметь разную киральность, как, скажем, совершенно одинаковые здания с совершенно одинаковыми, но направленными в противоположные стороны пристройками-флигелями. Эти одинаковые, но, так сказать, направленные в разные стороны молекулы называют понятно и просто — «левыми» и «правыми». Кристаллы из «левых» или из «правых» молекул были изучены еще великим Пастером. Но как поведут себя эти молекулы в жидкой фазе, в растворе, где они смогут свободно двигаться, объединяться или отталкиваться, демонстрировать свои симпатии и антипатии? Ответить на такой вопрос удалось только в самое последнее время, и обнаружилось при этом, что по некоторым важным показателям соединения из молекул одинаковой киральности имеют заметные преимущества перед точно такими же «лево-правыми» соединениями. Отсюда, может быть, начинается путь к объяснению необъяснимой пока тайны живой природы — все живое построено в основном из молекул одной («левой») киральности.

В то же время в неживой природе ни один из двух видов киральности не имеет преимущества. Вполне возможно, что рождение нашего «левого» живого мира — это не более чем результат случайности. В самых первых химических соединениях, ставших основой для зарождения и развития жизни, «левых» молекул оказалось чуть больше. И это в итоге определило победу «левых» соединений над своими «правыми» конкурентами: подобно снежной лавине, разрастался мир «левых» живых организмов, не попавших в гибельный процесс объединения «левых» и «правых» молекул. (Взаимодействия молекул различной киральности в растворах. Академик М. И. Кабачник, доктор физико-математических наук Э. И. Федин с сотрудниками. Институт элементоорганических соединений АН СССР.)

Пример третий — машины-молекулы при сверххолоде. Зажигая спичку или замораживая продукты в холодильнике, вы иллюстрируете один из основных законов химии — закон Аррениуса, который утверждает: скорость химических реакций увеличивается с ростом температуры. Из этого закона следует, что вблизи абсолютного нуля (—273,16 °C) все химические реакции вообще должны прекратиться. Но вот точная теория, расчеты, а затем и эксперименты, сначала качественные и, наконец, количественные, показали: никакого прекращения реакций нет; машины-молекулы, хотя и медленно, но продолжают работать в условиях предельного холода. Продолжают работать вопреки всем законам классической механики, но в полном согласии с «безумными» законами механики квантовой. Эксперименты, кстати, показали, что при сверхнизких температурах могут строиться большие сложные молекулы. А это дает повод думать о «холодной предыстории жизни», о том, что в безжизненном, холодном космосе миллиарды лет могли создаваться полуфабрикаты для будущих «теплых» живых систем. (Исследование химических реакций вблизи абсолютного нуля. Член-корреспондент Академии наук В. И. Гольданский с сотрудниками. Институт химической физики АН СССР; профессор А. Д. Абкин с сотрудниками. Физико-химический институт им. Л. Я. Карпова.)

Одна из особенностей этих трех примеров характерна и для большинства других, которые можно было бы привести, — полученными результатами исследователи во многом обязаны совершенству современных приборов и методов изучения молекул, таких, например, как метод ядерного магнитного резонанса, который позволяет уловить изменение зарядовой плотности на сотые доли процента.

И еще одна особенность, еще одна общая черта всех приведенных примеров. Чтобы яснее увидеть ее, есть смысл вернуться к началу нашего короткого рассказа, как говорят химики, «замкнуть кольцо».

Вполне вероятно, что кто-нибудь захочет подробно описать жизнь Гулливера в Лилипутии атомного века, углубить аналогию между его исследованиями лилипутской техники и нашими исследованиями невидимых машин микромира — атомов и молекул. Сюжет новых похождений знаменитого путешественника можно, разумеется, строить по-разному, но один элемент в него нужно ввести обязательно — нужно, чтобы судьба Гулливера каким-то образом зависела от его исследовательских успехов. Ну, скажем, так. На Гулливера готовится покушение, и чтобы сорвать его, нужно достаточно быстро разобраться в системе подрыва минных полей, окружающих жилище путешественника. Только подобный сюжетный ход может сделать нашу аналогию правдоподобной по самому важному показателю — по значимости результатов, полученных исследователями, потому что с инженерии машин-атомов и машин-молекул начинается точная наука биология, от успехов которой в огромной степени зависят наши урожаи, наше здоровье и долголетие, сама наша жизнь.