От воздушных шаров к самолетам

We use cookies. Read the Privacy and Cookie Policy

От воздушных шаров к самолетам

Наряду со стремлением поднять в небо летательные аппараты тяжелее воздуха людей не оставляла мечта о свободном полете на аппаратах легче воздуха. Воздушное пространство — естественная среда обитания человека. Однако его организм приспособлен для жизни на сравнительно небольших высотах над уровнем моря. Атмосферный воздух, как известно, это смесь газов: азота (78,09 %), кислорода (20,95 %), аргона (0,93 %), углекислого газа (0,03 %). Других газов в атмосфере содержится менее 0,01 %. В ней также содержится водяной пар (от 0,05 до 4 %) и другие примеси, количество которых непостоянно. Физико-химические и физиолого-гигиенические характеристики воздуха стали известны не сразу. Пять тысячелетий назад индийские мудрецы Джабали, Бхадури и Пурандра провозгласили, что мир состоит из четырех элементов: воды, огня, воздуха и земли. Древнегреческий философ Анаксимен (VI век до н. э.) первоначалом считал воздух. Он бесконечен, вечен и подвижен: сгущаясь, он образует облака, затем воду и наконец твердые тела. Архимед из Сиракуз (287–212 гг. до н. э.) установил условия плавания тел в воде: «На всякое тело, погруженное в воду, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости». Аристотель (384–322 гг. до н. э.) ввел понятие «атмосфера». В 1632 году Галилео Галилей, взвесив воздух, доказал, что он обладает массой. Он установил, что медный шар, если в него накачивать воздух, увеличивает свой вес. Галилей смело применил закон Архимеда о выталкивающей силе к воздуху/5/. В XVI веке летательную машину, способную подняться в небо в силу того, что она легче воздуха, придумал английский ученый А. Склигер. Оболочку шара он предложил изготавливать из тончайших золотых пластин и наполнять ее вместе с дымом от костра горячим воздухом/6/. В 1644 году французский ученый и философ Рене Декарт высказал предположение, что атмосферное давление с увеличением высоты уменьшается. В 1657 году немецкий физик Отто фон Герике определил плотность воздуха и создал первый водяной барометр для предсказания погоды. В 1662 году химик Роберт Бойль установил, что в разряженной атмосфере процессы дыхания и горения происходят значительно слабее/7/. В 1768 году шотландский ученый Д. Блэк пришел к выводу о возможности использования исследованных им свойств «горящего воздуха» (водорода), который оказался легче обычного воздуха, для создания аэростатической подъемной силы летательных аппаратов. В 1781 году английский физик и химик Г. Кавендиш определил состав воздуха, показав, что содержание в нем кислорода 20,84 % (фактически — 20,946 %)/ 8/.

Первыми воздухоплавательными аэростатическими аппаратами легче воздуха (см. рис. 3) как известно, стали монгольфьеры. Сыновья провинциального французского бумажного фабриканта Монгольфье — Этьен и Жозеф — из Виделон-Лез-Аннонна изготовили из специально обработанной бумаги несколько шаров различного диаметра. Внизу шары имели отверстие, закрытое решеткой из виноградной лозы. При помощи костра из мокрой резаной соломы они вначале запустили в небо пробный шар диаметром 1 м, затем шар объемом 20 м3.5 июня 1783 года они запустили в небо первый аэростат: холщовую оклеенную бумагой сферу диаметром 11 м и объемом 600 м3. За 19 минут она поднялась на высоту 2 км, а затем приземлилась в 3 км от места запуска. Народ ликовал. Парижская академия наук пригласила братьев для повторного запуска в Париж. Молодой ученый Фожа де Сен-Фон организовал подписку и собрал 10 тысяч франков. Он предложил физику Ж. Шарлю проверить опыт Монгольфье.

Рис. 3. Первые полеты воздушных шаров монгольфьеров без людей — 5 июня 1783 г. и с людьми — 21 ноября 1783 г.

В пику провинциалам было решено повторить полет, но уже на аэростате, изготовленном по последнему слову науки и техники. Под руководством Ж. Шарля два брата кузнеца некие Робберы изготовили из обработанного специальной уплотняющей пропиткой шелка оболочку шара диаметром 3,75 м. В нижней части аэростата вместо решетки из виноградной лозы установили шланг с запирающим клапаном. Свободный конец шланга крепился к верхней крышке бочки, заполненной железными опилками. Опилки были залиты серной кислотой. При химической реакции с железными опилками из бочки в оболочку по шлангу поступал водород. Аппарат получил по имени его создателя название «шальер». 28 августа 1783 года «шальер» взмыл за 2 минуты до облаков, скрылся из виду и лопнул, т. к. создатели аппарата забыли открыть запорный кран. 19 сентября 1783 года братья Монгольфье запустили свой аппарат диаметром 12,5 м.

В качестве пассажиров на нем в клетке отправились в небо баран, утка и петух. Шар продержался в воздухе 8 минут и приземлился в 3,5 км от места старта в Версале. Аэростаты, заполненные подогретым воздухом, стали называть «монгольфьерами». На повестку дня стал вопрос о полете человека Хранитель музея науки 27-летний Пилатр де Розье соорудил монгольфьер с кольцеобразной галереей, в центре которой, под отверстием шара, находился проволочный очаг. Первый пробный полет на монгольфьере высотой 21 м он осуществил из сада на улице Монтрейль 15 октября 1783 года Шар был привязан. Розье поднялся на высоту 24 м и продержался в воздухе 4 минуты. С 15 по 17 октября он совершил 5 подъемов на высоту 24,60,75 и 100 м. В,последний привязной полет он ушел с напарником Жиру де Виллета. Затем был еще один такой подъем вместе с маркизом Д’Арланом. 21 ноября 1783 года в парке, в замке де ла Мюэтт, на помост ставится уже хорошо зарекомендовавший себя монгольфьер с аэронавтами Пилатром де Розье и д’Арланом. Официальный протокол полета в тот же день подписали девять знатных и ученых мужей. Официальный протокол содержал следующее: «Видели, как она (машина) величественно поднималась. Когда она была на высоте около 250 футов (76 м), неустрашимые путешественники сняли шляпы и приветствовали зрителей. Нельзя было удержаться от чувства страха и удивления. Скоро воздушные навигаторы исчезли из вида… Она пересекла Сену над ограждением де ла Конферанс и прошла между Военной школой и Домом инвалидов на виду у всех парижан. Заметив, что ветер несет их на дома улицы Севр, они не растерялись и, прибавив газу, вновь поднялись, пока не миновали Париж. Тогда они спокойно опустились на поле за новым бульваром напротив мельницы Крулеборг…. Всего они прошли около 8—10 км (на высоте 915 м) за промежуток времени 20–25 минут»/9/.

Тем временем Шарль изготовил новый шальер. Расчеты показали, что его миниатюрный по сравнению с монгольфьером Розье шар диаметром 8 м достаточен для подъема корзины-гондолы с экипажем из 2-х человек и дополнительного груза-балласта для его сбрасывания при необходимости увеличить высоту полета или отрыва от земли. На заполнение шара аэростата водородом ушло 3 дня. 1 декабря 1783 года в подвесную гондолу вошли два новых воздухоплавателя: сам профессор и один из Робберов. Шар у земли удерживался веревкой. По просьбе Шарля веревку перерезал Этьен Монгольфье. К всеобщему удовольствию жителей Парижа, в течение 2 часов 5 минут на высоте 400 м шар (рис. 4) парил над городом. После приземления Роббер покинул гондолу, а Шарль как ни в чем не бывало, при всеобщем ликовании, поднялся в воздух еще раз. В опасном одиночестве он достиг высоты 3000 м. Сбрасывая балласт и выпуская газ по шлангу, он управлял как высотой полета, так и актом приземления/10/. Ж. Шарль стал национальным героем и почетным членом Академии наук. Помимо прочих наград, в честь изобретателей обеих типов воздушных шаров была изготовлена памятная медаль. Имя Шарля на ней было выбито рядом с именем Монгольфье. Ученые круги задались вопросом: могут ли, и на каких высотах, люди подвергнуться опасности задохнуться от недостатка воздуха/11/?

Рис. 4. Полет Жака-Александра Шарля и одного из братьев Робберов на аэростате-шальере 1 декабря 1783 г.

Полотно, оклеенное бумагой, как материал для изготовления оболочки аэростата, предназначенного для полета людей, был ненадежен. В дело пошли шкуры и кишки животных. Для уплотнения проницаемых для воздуха матерчатых аэростатных оболочек получила распространение бордюшированная оболочка тонких кишок коров, свиней и овец. Бордюшированную тонкую пленку клеили из желатина, глицерина и соды, наклеивали на материю с внутренней стороны шара. В дальнейшем несущие оболочки стали изготавливать из алюминия, дюралюминия, титана и синтетических материалов. Для нагрева и поддержания температуры несущего воздуха сначала пользовались соломой, ветками и каменным углем, затем перешли на нефть и горючие газы. Вместе с горючими газами появляются горелки с регулирующими устройствами и механизмы автоматического поддержания температуры горячего воздуха в оболочке/12/.

23 июня 1784 года монгольфьер с экипажем из двух человек поднялся на высоту 4000 м. Полеты, выполняемые пилотами на высотах более 4000 м, сегодня называют «высотными». Как известно, работоспособность человека на подобных высотах заметно снижается. Причинами ухудшения являются: недостаток кислорода, понижение атмосферного давления и низкая температура воздуха. Уже более ста лет тому назад французский биолог и естествоиспытатель Поль Бер провел и для наших дней актуальные исследования по воздействию на организм человека пониженного и повышенного барометрического давления, которые составляют основу научных представлений о сущности декомпрессионных расстройств. Он неоднократно подвергал себя воздействию различных величин давления разреженного воздуха в барокамере на высотах 8000–8800 м. Результаты своих исследований он в 1878 году опубликовал в книге «Барометрическое давление»/13/.

В 1881 году В. В. Пашутин предложил термин «кислородное голодание» и дал классификацию заболевания. У земли и на больших высотах процентное содержание главных составляющих воздуха — азота и кислорода — остается неизменным: 78 % азота и 21 % кислорода. Однако на больших высотах воздух становится разреженным. При дыхании подобным воздухом и начинается «кислородное голодание»: функциональные расстройства организма, связанные с ухудшением нормального газообмена в организме/14/. При этом возникают: головная боль, чувство тяжести в голове с мгновенным засыпанием, апатия, усталость и полная отчужденность. Опыты, проводимые в середине XX века в высотных барокамерах, нацеленные на безопасное пребывание пилота на больших высотах, позволили летчикам и стратонавтам начать успешное завоевание заоблачных высот. Е. Е. Чертовский в своей книге «Стратосферные скафандры» (1940) приводит первые шаги пути, по которому шла авиационная медицина, преодолевая высотные барьеры «кислородного голодания». «При снижении барометрического давления в высотной барокамере вдвое (с 760 мм рт. ст. до 380 мм рт. ст.) и одновременном увеличении процентного содержания кислорода в атмосфере камеры тоже вдвое (с 21 % до 42 % О2) у находящегося в камере испытуемого кислородного голодания не возникало». В связи с подобными опытами Е. Е. Чертовский приводит в книге известное общее понятие о так называемом «парциальном давлении» в дыхательной газовой среде (азот, кислород):

«У земли при атмосферном давлении 760 мм рт. ст. с содержанием кислорода 21 % величину его парциального давления можно определить по формуле:

0,21 * 760» 160 мм рт. ст.

При снижении давления до 380 мм рт. ст. и увеличении содержания кислорода с 21 % до 42 % парциальное давление кислорода в дыхательной среде барокамеры остается тем же:

0,42 * 380 «160 мм рт. ст.»

По мнению Е. Е. Чертовского, если принять за основу и исходить из необходимости сохранения стабильности парциального давления кислорода, допуская при этом понижение общего давления, то в определенных практически значимых допустимых пределах можно с помощью приборов обеспечивать пилоту достаточно продолжительное время вполне безопасное пребывание в полете на больших высотах/15/. Но вернемся к началу воздухоплавания. Успешные высотные полеты аэростатов позволили ученым приступить к исследованию атмосферы — основы жизни на земле.

24 июня 1802 года Гумбольдт и Бомплан поднялись в небо с целью измерения температуры и давления воздуха. Их аэростат достиг высоты 5878 м. В 1803 году физик Робертсон провел исследование электрических явлений в атмосфере на высотах 7000 м/16/.

Не было еще способов управления аэростатами в горизонтальной плоскости. При любом ветре они превращались в неуправляемую «игрушку стихии». Эту малопривлекательную особенность аэронавты окрестили термином «свободный полет». Решая задачу управления полетом в 1852 году, французский инженер-механик А. Жоффар создал первый оборудованный механическим двигателем аэростат. А. Жоффар установил на нем паровую машину весом 48 кг и мощностью 2,2 кВт. Скорость полета аэростата с мягкой оболочкой в безветренную погоду составила 3 м/сек. В 1880 году немецкий инженер Г. Вельшфорт установил на аэростат бензиновый двигатель, а в 1883 году французы братья Гастон и Альберт Тиссандье оборудовали аэростат (рис. 5) электродвигателем мощностью 1,5 кВт. Вес питающей его аккумуляторной батареи был 220 кг, скорость 4 м/сек. При столь малых скоростях аэростаты по-прежнему не имели возможности двигаться против ветра, но двигатель с движителем в виде винта наделил их небольшой скоростью и возможностью совершать в тихую погоду полеты в требуемом для аэронавтов направлении/17/. «Свободный полет», как основная характеризующая первые аэростаты общая их особенность, с установкой двигателей постепенно сходит на нет.

Рис. 5. Дирижабль Гастона и Альберта Тиссандье с электрическим двигателем (октябрь 1883 г.) из книги А. Е. Тараса «Дирижабли на войне»

5 сентября 1862 года англичане Плешер и Коксуэлл на высоте 8000 м потеряли создание. Аэростат поднялся до высоты 11 300 м. Через два часа аэронавты приземлились. Температура на достигнутых высотах была от —30 до —40 °C. Их спасла теплая одежда.

В 1874 году французские воздухоплаватели Сивель и Кроче-Спинелли, готовясь к высотному полету, посетили в Париже физиолога П. Бера. Он предложил им в качестве предварительной тренировки подвергнуть себя в барокамере действию низких давлений, соответствующих высоте задуманного предприятия в 6900 м. Для предупреждения кислородного голодания П. Бер снабжает их резиновыми мешками с кислородом. 22 марта 1874 года исследователи с двумя типами дыхательных смесей отправляются в полет. В одном мешке дыхательная смесь состояла из 40 % кислорода и 60 % азота, в другом — 70 % кислорода и 30 % азота. До высоты 5400 м они использовали первую смесь, далее перешли на вторую. Полет завершился успешно. Это было, по сути, первое в мировой практике научно обоснованное при высотных полетах применение кислорода для предупреждения кислородного голодания. Но научные рекомендации не пошли на пользу. Воздухоплаватели переоценили личный опыт.

15 апреля 1875 года Кроче-Спинелли, Сивель и Тиссандье приступили к осуществлению очередного сверхвысотного подъема до высоты 8000 м Для предупреждения кислородного голодания они решили использовать дыхательную газовую смесь, содержащую 72 % кислорода и 28 % азота. Запасы дыхательной газовой смеси поместили в три индивидуальных надувных резиновых мешка сферической формы емкостью по 150 литров. По одному мешку на каждого пилота Кислород был дорог. Воздухоплаватели посчитали возможным пользоваться кислородом только при крайней необходимости. Поль Бер предупредил письмом, что такого запаса кислорода для полета недостаточно. В воздухе разыгралась жестокая трагедия. Когда аэронавты почувствовали наступление общей слабости, то воспользоваться кислородом уже не смогли — развился скоротечный паралич. Шар поднялся на высоту 8000 м и самопроизвольно опустился. Пилоты потеряли сознание. В живых остался только Тиссандье/18/. На рис. 6 можно видеть высотное кислородное оборудование образца 1875 года.

Рис. 7. Тиссандье и его спутники Сивель и Кроне-Спинелли во время подъема на воздушном шаре (15 апреля 1875 г.). Сивель сбрасывает балласт, Тиссандье следит за показаниями барометра, Кроче-Спинелли вдыхает кислород

Первый управляемый аэростат Жоффара, хотя был и тихоходным и несовершенным, однако получил право называться первым дирижаблем. Управляемое воздухоплавание закономерно оттеснило аэростаты свободного полета с престижных первых позиций. «В 1909 г. успехи изобретателя жесткого дирижабля графа Фердинанда фон Цеппелина, чьи инициативы получили поддержку кайзера Вильгельма II и имперского парламента, начали рассматриваться публикой как престиж Германии».

Его дирижабль LZ-5 выполнил все требования военных и был принят на вооружение. В преддверии Первой мировой войны в Германии было сформировано 5 воздухоплавательных батальонов, в составе которых было 11 дирижаблей. В начале войны (рис. 7) низкие летно-технические характеристики истребительной авиации союзников с потолком 2100–3000 м позволяли дирижаблям легко уходить от преследования.

Рис. 7. Истребители союзников

Но уже в середине войны самолеты истребительной авиации получают возможность атаковать дирижабли сверху. В 1916 году новые высотные двигатели позволили дирижаблям забираться на высоту 5400 м. Высота 5000 м стала высотой, на которой они имели возможность преодолевать заграждения английской ПВО.

Низкие температуры порядка —40 °C и недостаток добротных кислородных приборов потребовали создания для пилотов специальной теплой одежды с муфтами для согревания рук. Кислородное голодание изнуряло экипажи Морально и физически и вело к оттоку личного состава с легко уязвимых теперь тихоходных воздушных мастодонтов. Ситуация несколько улучшилась с появлением кислородного снаряжения с мундштуками и масками для дыхания, но ненадолго. Еще во время мировой войны дирижабли по сравнению с самолетами были признаны неэффективными и из-за нехватки легкого и прочного дюралюминия для изготовления самолетов были списаны из действующих частей и разобраны на металл/19/.

В дальнейшем «…высоты в 3500 м были в авиации приняты как граница, выше которой надлежало пользоваться кислородными приборами. На высотах до 8000–9000 м, где атмосферное давление в пределах 200 мм рт. ст., для дыхания можно было пользоваться смесью кислорода с воздухом При полетах на высотах более 9000 м — только чистый кислород. Высота 12 000 м стала границей полетов с кислородным оборудованием в открытой кабине. При полетах в герметичной кабине самолета на случай разгерметизации кабины предусматривалась возможность подачи кислорода в маску с избыточным давлением, которое дополнительно обеспечивало герметичное прилегание маски к лицу/20/. «Универсальным средством создания нормальных условий для жизнедеятельности экипажа в случае разгерметизации кабины на больших высотах стал скафандр. Скафандр герметичен. В нем используется равномерно распределенное пневматическое обжатие тела, что благоприятно сказывается на физиологическом состоянии человека. Допустимая продолжительность полета в скафандре уже исчисляется не минутами, а часами»/21/.

В 1937 году скорости полета самолетов достигают 800 км/час, а предельные высоты превосходят 16 км. Рост функциональных нагрузок при пилотаже самолетов способствовал проявлению нежелательных функциональных сдвигов со стороны физиологических систем организма. Изучением вредного воздействия перегрузок, исследованиями и наблюдением за внедрением в летное дело адекватной перегрузкам системы противоперегрузочных устройств занялась авиационная медицина.

Таблица 1

По В. М. Бабушкину, при криволинейных полетах скорость самолета меняется по направлению. При этом тело пилота действует на чашу своего кресла таким образом, что увеличивает или уменьшает на нее давление. Если бы, к примеру, пилот при вводе самолета в пикирование не фиксировался бы в кресле привязными ремнями, то мог бы быть выброшенным из кабины. Из-за сил инерции происходит деформация тела в сторону, противоположную ускорению. Вес тела как бы повышается. Оно испытывает, как это было принято в авиации говорить, перегрузку. На земле тело в покое тоже испытывает воздействие силы тяжести — т. е. тело уже деформировано, а его структуры испытывают привычное напряжение: это так называемая «перегрузка покоя». Исходную земную перегрузку условно и приняли за единицу или начальную точку отсчета величин перегрузок. Перегрузка зависит от ускорения и не имеет размерности. Если человек стоит на доске, то он давит на эту опору. Если доску убрать, то человек начнет падение с ускорением g = 9,8 м/сек2. Если, к примеру, летательный аппарат совершает вертикальный взлет с ускорением 1 g, то внешняя сила (кресло пилота) действует на тело пилота против силы тяжести. К привычной перегрузке покоя, равной единице, добавляется еще одна единица, вызванная ускорением вертикального подъема. Суммарная перегрузка в этом случае будет равна двум То ускорение, которое испытывает тело пилота при свободном падении самолета при переходе в пикирование и выключении двигателя, равное 1 g, будет совпадать по направлению с силой земного притяжения. Кресло пилота, как опора для его тела, при этом начинает «убегать» из-под пилота тоже с ускорением lg. Его тело теперь уже не давит на свою опору: привычная перегрузка покоя исчезает. Наступает так: называемое состояние искусственной кратковременной невесомости, когда перегрузка равна нулю: lg — lg = 0.

Траекторию полета древней аэрофуги можно, как мы помним, уподобить полету самолета по вертикальной параболе Кеплера для воспроизведения кратковременной невесомости. При этом пилоты древнего и современного летательных аппаратов испытывали и испытывают близкие по величине и направлению перегрузки. Для воспроизведения кратковременной невесомости при вхождении в пикирование современный летчик: выключает двигатель. Через 25–30 секунд падения он включает двигатель вновь. При выходе из пике перегрузки достигают величины порядка 3g. В качестве двигателя на аэрофуге слркил «несущий вихрь».

По мере замедления своего вращения его оболочка начинала разрушаться, а аэрофуга терять высоту, с переходом в свободное падение. Помимо воли древнего пилота наступало воспроизведение «кратковременной невесомости». Чтобы остановить падение и продолжить полет, пилот включал срочную «подпитку-подкрутку» несущего вихря. Для чего в тор-ступу по паропроводам подавались струи перегретых паров ртути. Аэрофуга вновь взмывала вверх. Перегрузки на этом отрезке полета могли достигать, как и на современном самолете при выходе из пике, значения, близкие 3g. Аэрофуга — аппарат вертикального взлета и посадки. Как сообщают древние источники, при взлете она «в один миг превращалась в жемчужину в небе», т. е. для понимания проблем, с которыми сталкивались в свое время пилоты аэрофуги, можно ограничиться в основном понятиями о влиянии на организм человека пилотажных перегрузок, которые возникают вдоль тела пилота по оси тела голова — таз, таз — голова.

Рис. 8. а — обозначение оси тела и перегрузок G по международной классификации вдоль оси тела пилота; в — перегрузки вдоль оси тела

«Для обозначения вида перегрузок и направления перегрузок относительно осей тела физиология и медицина придерживается (см рис. 8) международной классификации. Чтобы не усложнять вопроса, ограничимся только перегрузками, возникающими вдоль оси тела

— Перегрузка обозначается буквой G;

— Продольная ось тела — буквой z;

— Перегрузка вдоль оси тела z обозначается Gz.

Перегрузки условно разделяются на положительные и отрицательные. Если перегрузка действует на летчика в направлении «голова — таз» (к примеру, лифт поднимается на верхний этаж, а кровь при этом отливает от головы и приливает к ногам), то перегрузка положительная + Gz (глазные яблоки опускаются вниз).

Перегрузка, действующая на летчика в направлении «таз — голова» (лифт опускается на первый этаж, а кровь при этом приливает от ног к голове), то перегрузка отрицательная — Gz (глазные яблоки поднимаются вверх)»/22/.

По Г. Амстронгу (1954), при положительном ускорении (перегрузке) +Gz (глазные яблоки опускаются вниз) происходит отток крови из верхней части тела, которая поступает в кровяное депо брюшной полости и конечности. «Вредное воздействие на организм человека определяется в основном падением кровяного давления и малокровием мозга. Значительные положительные ускорения способны повлечь за собой понижение остроты зрения или даже потерю сознания. Для затруднения оттока крови из верхней части тела путем механического повышения внутрибрюшного давления применяется перетягивание живота поясом. Пояс должен надуваться над передней стенкой живота, не защищенной костным скелетом. Надувную часть изготавливают из плотной вулканизированной резины с усиленными краями, и она соединяется с внутренней стороной тканевого футляра Тканевый футляр следует хорошо пригнать и снабдить ремнями, охватывающими ноги, чтобы пояс не сдвигался с места и защищал паховую область. Пояс позволяет повышать индивидуальную выносливость на 0,5–1,0 g по отношению к положительному ускорению… Современная противоперегрузочная одежда делается из системы мешков не только в области живота, но и ног. Такое снаряжение не только предупреждает переполнение вен нижних конечностей, но и способствует перемещению крови из нижней части тела в верхнюю. Давление в надувной части пояса нужно повышать до 50—100 мм рт. ст. Противоперегрузочная одежда обычно действует автоматически. Для нагнетания воздуха используется компрессор самолета. Давление сбрасывается после прекращения действия положительного ускорения. Этот тип снаряжения повышает индивидуальную выносливость по отношению к ускорению на 2,5–3 g»/23/.

По П. К. Исакову и др. (1971), «с целью создания препятствия для обильного движения жидких сред организма при перегрузках используются противоперегрузочные устройства, основанные на принципе создания противодавления на отдельных участках нижней половины тела В резиновые камеры, которые размещаются на путях движения жидких сред, подается воздушное давление. Подача требуемой порции сжатого воздуха при возникновении перегрузочных ускорений осуществляется автоматически. При исчезновении перегрузочных ускорений или снижении их до допустимых величин давление снижается тоже в автоматическом режиме. При использовании перегрузочного костюма переносимость перегрузок голова — таз повышается примерно на lg»/24/.

Рис 9а. Противоперегрузочное устройство летчика:

а — общий вид противоперегрузочного костюма;

1 — брюшная камера; 2 — камера для бедра и голени

В. И. Степанцов охарактеризовал действие подобных механических противоперегрузочных устройств как «полужгутирование». Жидкие среды в организме пилота при изменении режима движения перемещаются по вектору действия возникающих перегрузок. Полужгутирование надувным поясом, например, в районе живота, создает препятствие для обильного движения жидких сред от головы к ногам и обратно.