Космическая ракета
Космическая ракета
В 1902 году он купил подержанный велосипед и за два дня с большим трудом научился ездить. Велосипед улучшил легкие, укрепил мышцы ног, позволил каждый погожий день ездить за город в лес, на Оку, которая была далеко от дома.
В период 1899-1902 гг. издаются лишь популярные работы, либо переиздаются старые.
В 1903 году в Петербургском научно-философском и литературном журнале «Научное обозрение» появилась его статья «Исследование мировых пространств реактивными приборами», которая осталась почти незамеченной широкими научными кругами, но которая должна была сыграть большую роль в его жизни.
Начиналась она с элементарных суждений о том, почему на большую высоту не могут взлетать аэростаты и снаряды, выпущенные из пушки.
Во втором разделе, озаглавленном «Ракета и пушка», сразу же во втором абзаце читаем: «Вместо них (пушек – Г.С.) или аэростата в качестве исследователя атмосферы предлагаю реактивный прибор, т.е. род ракеты, но ракеты грандиозной и особенным образом устроенной. Мысль не новая, но вычисления, относящиеся к ней, дают столь замечательные результаты, что умолчать о них было бы недопустимо.
Эта моя работа далеко не рассматривает всех сторон дела и совсем не решает его с практической стороны относительно осуществимости: но в далеком будущем уже виднеются сквозь туман перспективы, до такой степени обольстительные и важные, что о них едва ли теперь кто мечтает» [110] [с. 73].
К.Э. Циолковский и здесь был верен себе и ничего не сказал о том, почему он считает, что мысль эта не новая. Что он тут имел ввиду: то ли он откуда-то узнал идею этой ракеты, или намекал на существующие пороховые ракеты?
И только спустя 23 года в очередной своей статье того же названия он написал, что стремление к космическим путешествиям к нему пришло после чтения книг Ж. Верна. Знал он и о существовании ракет, на которые смотрел с точки зрения увеселений и «маленьких применений» [113] [с. 179].
Ракеты в то время работали на обыкновенном порохе и известны они были по крайней мере с ХШ века. Их путь развития был сложным: они то начинали применяться с военными целями, то интерес к ним, как к оружию, пропадал. Устойчивая ниша их использования включала в себя фейерверки, сигналы, спасение людей с судов, потерпевших крушение у берегов, посредством переброски на берег специальных тросов.
Боевые ракеты были в очередной раз сняты с вооружения приблизительно в 70-е гг. XIX в., когда появившиеся нарезные артиллерийские орудия превзошли их в своей точности и дальности стрельбы.
Однако К.Э. Циолковский знал и о боевых ракетах [111] [с. 100]. Как он сам отметил в работе [113], он был знаком и с брошюрой А.П. Федорова, выпущенной в Санкт-Петербурге в 1896 году. К.Э. Циолковский писал: «Мне показалась она неясной (так как расчетов никаких не дано). А в таких случаях я принимаюсь за вычисления самостоятельно – с азов. Бот начало моих теоретических изысканий о возможности применения реактивных приборов к космическим путешествиям. Никто не упоминал до меня о книжке Федорова. Она мне ничего не дала, но все же она толкнула меня к серьезным работам, как упавшее яблоко к открытию Ньютоном тяготения» [113] [с. 179].
Если фамилия террориста Н.И. Кибальчича шествует по книгам и энциклопедиям, а работа с его скромным и неосуществимым предложением об использовании ракетного двигателя на твердом топливе на воздухоплавательном аппарате более или менее регулярно цитируется и даже переиздается, то о проекте А.П. Федорова как будто забыли.
Итак, его брошюра [81] имеет небольшое введение и четыре раздела. Отметив, что задача по управлению аэростатами пока не находит решения, А.П. Федоров предлагает свой проект воздухоплавательного прибора, который «…идет вразрез с установившимся основным положением к разрешению задачи и пытается поставить эту последнюю на новый путь» [81] [с. 3].
Сначала, в первых двух разделах, он рассматривал «механизм» полета птиц. С этой целью он использовал прибор, в котором под действием грузов приводилась во вращение ось с двумя крыльями, и с его помощью выяснил, что когда птица опускает крылья, то под ними возрастает давление воздуха. Дальше он писал:
«Так, если бы мы покрыли форсовым составом (медленно горящий порох) нижнюю поверхность крыльев и туловища манекена птицы с распростертыми, неподвижно укрепленными крыльями и затем подожгли бы состав, то наш манекен взлетел бы на воздух и держался бы в нем.
Очевидно, что принцип полета птицы и ракеты один и тот же, с механической точки зрения, ибо разница лишь в том, что ракета получает сжатый газ от горящего пороха, а птица сжимает находящийся под нею воздух» [81] [с. 9].
Эта параллель не совсем правильна, но ясно, что автор кое-что знает о ракете. Далее в разделе 3 он описывает свой «воздухоплавательный прибор».
Рассмотрим рис. 10. На нем изображена схема камеры жидкостного ракетного двигателя. Обозначения здесь такие: «абвгдежз» ограничивают контуры цилиндрической трубы с «загнутыми внутрь стенками «абв» и «зже». Другими словами, одна труба вставлена в другую и с одного края «вб» и «же» кольцеобразное пространство между ними закрыто. В нижнюю часть этой трубы проведены трубы «п» и «п», по которым подается под давлением газ. Он проходит через «аз» и идет по цилиндрическому каналу «абжз»
Вот как объяснял принцип работы этого устройства его автор: «На этом пути его (газа – Г.С.) давление на стенки канала взаимно уравновешивается, давление же на часть площади «гд» (проекция «бж» на «гд»), т.е. снизу вверх, не уравновешивается ничем, так как «бж» представляет свободный выход идущему по каналу газу, – явление, совершенно аналогичные тому, что имеет место, как мы видели, в полете птицы, а также в ракете и в отдаче огнестрельного оружия» [81] [с. 12].
Это точное современное объяснение принципа работы ракетного двигателя, который К.Э. Циолковский, как будет показано в разделах о звездолетах, стратопланах, а также и о наземной технике, вообще не понял.
Этот прибор, по замыслу А.П. Федорова, должен был работать на каком-нибудь газе, поступающем в камеру, т.е. он предлагал однокомпонентный и холодный двигатель. Для производства газа он считал необходимым предусмотреть какой-нибудь генератор, например, «бутылки» (баки с вытеснительной системой подачи), компрессоры («воздуходувные машины») или же парообразователь,»… который, по-видимому, будет еще выгоднее, в особенности, если применить новейший способ Серполе, обеспечивающий небольшой вес системы.»
«Топливом» может быть либо жидкая углекислота, либо воздух и даже вода (при использовании пара). Правда, автор не рассматривал вопрос о том, каким образом этот пар целесообразно производить; какое, например, будет при этом топливо [81] [с. 14].
Он считал, что можно составить систему таких «труб», чтобы передвигаться в воздухе в любом направлении. Еще одну трубу, спирально обвивающую центральную, он считал целесообразным использовать для управления этим аппаратом.
В последнем разделе он приводит простенький расчет, который показал, что тяга этого двигателя будет по крайней мере не меньше, чем у паровой машины при равенстве площадей ее поршня и его «опорной» поверхности («аз»).
Итак, А.П. Федоров высказал идею об использовании реактивных двигателей на однокомпонентных топливах: жидком, газообразном и водяном паре. Однако она не была новаторской. Наш соотечественник штабс-капитан И.И. Третеский еще в марте 1849 года направил главнокомандующему кавказским корпусом генералу-фельдмаршалу М.С. Воронцову письмо с описанием изобретенного им управляемого аэростата. В качестве двигателя последнего предполагалось использовать однокомпонентные холодные ракетные (реактивные) двигатели, давшие и соответствующие названия аэростату: паролет, газолет (с пороховым двигателем), воздухолет [8] [с. 61-88; 176]. Твердотопливные ракетные двигатели для летательных аппаратов предлагались также Н.И. Кибальчичем (1881 г.) [8] [с. 236-240], Н.М. Соковниным (1866 г.) [177]; воздушно-реактивный двигатель был предложен Н.А. Телешовым [37]; реактивный двигатель, работавший на паре, предлагался также Н. Архангельским (1851 г.) [8] [с. 88-90], Ф. Гешвендом [8] [с. 351-357] и др.
В 1882 году идея реактивного движения оказалась в поле внимания и Н.Е. Жуковского, занявшегося ее теоретической разработкой [19]. Что же для себя нового и непонятного мог увидеть К.Э. Циолковский в этой работе. Может быть указание на возможность получать такую силу не только с помощью твердых или газообразных, но и посредством жидких рабочих тел.
Видимо, на этот вопрос он ответил в 1926 году, когда в работе [113] писал: «Некоторые предлагают для реактивного действия сжатые в сосудах газы или сильно нагретые летучие жидкости. Это совершенно неприменимо – и вот почему. Самые точные и многочисленные мои расчеты показывают, что вес резервуаров самой лучшей формы и материала, по крайней мере в пять раз больше веса сжатого воздуха, заменяющего взрывчатое вещество. Отсюда видно, что газовый отброс всегда будет раз в 5-10 весить меньше, чем ракета…, для получения низшей космической скорости надо, чтобы взрывчатый материал при самых благоприятных условиях превышал по массе ракету в четыре раза» [113] [с. 245]. Это было новым, а непонятным остался, видимо, принцип работы ракетного двигателя.
Как уже отмечалось, интерес человечества к полетам в космос ведет свой отсчет из древности, скажем, от мифа об Икаре, и был подогрет писателями фантастами. Так, например, французский писатель Савиньен де Сирано, известный под именем Сирано де Бержерак, еще в 1649 году в романе «Путешествие на Луну» описал многоэтажное устройство, на котором солдаты разместили по шесть ракет на каждом этаже. При помощи этих ракет это устройство с Сирано на борту якобы поднималось на огромную высоту. В сочинении Жюль Верна «Путешествие на Луну» управление полетом ядра предлагалось осуществлять с помощью ракет. В 1806 году французский пиротехник Рюжьери запустил вертикально ракету с бараном и затем спустил ее на парашюте. Подобного рода примеры можно приводить и дальше, и все они характеризуют то обстоятельство, что идеи ракетного полета и полета в космос к началу XX в. уже не были новыми.
К.Э. Циолковский понимал, что для осуществления космического полета необходимо, чтобы калорийность топлива была предельно высокой. Но наибольшая она была у жидких компонентов, а поскольку их тоже можно применять на ракете, то следует их и подавать в ее камеру. Так, синтезируя чужие идеи и добавив к ним лишь идею двухкомпонентного жидкого топлива, К.Э. Циолковский пришел к идее жидкостной космической ракеты.
«Представим себе, – писал он, такой снаряд: металлическая продолговатая камера» …, которая «имеет большой запас веществ, которые при своем смешении тотчас же образуют взрывчатую массу. Вещества эти, правильно и довольно равномерно взрываясь в определенном для того месте, текут в виде горячих газов по расширяющимся к концу трубам (рис. 11), вроде рупора или духового музыкального инструмента» [110] [с. 73].
Ракета эта должна быть пилотируемой, поэтому у нее был отсек для экипажа, снабженный светом, кислородом, поглотителями углекислоты, миазмов и других «животных выделений».
Как и каждый изобретатель, он попытался сформулировать преимущества своего детища перед другими аналогичными средствами, и прежде всего с теми, которые существовали реально: большая пушка (а дирижабль нельзя было брать в расчет). Впрочем, сам автор понимал, что пушка тоже непригодна для космических полетов, поскольку в ядре, выпущенным ею, развиваются чрезмерные перегрузки, а обратное его возвращение на Землю более чем сомнительно [110] [с. 72-73], не говоря уже о проблемах, связанных с сопротивлением атмосферы.
Итак, в разделе о преимуществах ракеты он писал:
«а) аппарат наш сравнительно с гигантской пушкой легко осуществим;»
Это было, как мы сейчас понимаем, большим заблуждением – это дело оказалось трудным и наукоемким. Как это ни парадоксально, именно это заблуждение стимулировало практические работы по жидкостной ракете Р. Годдарда (США), Г. Оберта (Германия), Ф.А. Цандера (СССР), Е. Зенгера (Австрия) и многих других пионеров ракетной техники.
«б) давление (тяга – Г.С.) взрывчатых веществ, будучи довольно равномерным, вызывает равномерно ускоряющееся движение ракеты, которое развивает относительную тяжесть (перегрузку – Г.С).
Здесь он не ошибается, поскольку при постоянной тяге из-за уменьшения с течением времени массы ракеты, ее ускорение будет переменным.
Далее: «…величиною этой временной тяжести (перегрузкой – Г.С.) мы можем управлять по желанию, т.е. регулируя силу взрыва (тяги – Г.С), мы в состоянии сделать ее, произвольно мало или много превышающей обыкновенную земную тяжесть».
Здесь К.Э. Циолковский полностью прав, поскольку возможность регулирования уровня перегрузок является определяющим достоинством жидкостных ракет в аспекте их использования для пилотируемых полетов.
«Если предположим для простоты, что сила взрыва (тяга – Г.С.) уменьшается пропорционально массе снаряда, сложенной с массой оставшихся не взорванными взрывчатых веществ, то ускорение снаряда, а следовательно, и величина относительной тяжести (перегрузка – Г.С.) будут постоянными».
Совершенно очевидно, что он для этого своего вывода использовал формулу из школьного учебника физики: F = mа, т.е. a = const, если F/m = const
Кроме отмеченных, К.Э. Циолковский указывает еще на одно достоинство ракеты: возможность регулировать скорость полета в широких пределах, что обеспечивает безопасный спуск и посадку ее на планету, а также уменьшение потерь на преодоление сопротивления планеты и ограничение величины аэродинамического нагрева.
Он правильно считал, что полет в атмосфере должен проходить с малой скоростью, которая может увеличиваться с разряжением воздуха.
Большое внимание он уделил вопросам, связанным с решением основных конструктивных проблем ракеты. Первый из них касался проблем управления движением центра масс и движением относительно центра масс. Этот вопрос К.Э. Циолковским был отчасти осмыслен еще в работе «Свободное пространство». Понимая теперь специфику космоса, он довольно четко формулирует сначала способы управления вектором тяги ракеты.
В атмосфере Земли (да и других планет) он считал целесообразным управлять полетом рулем, «подобным птичьему» [110] [с. 74]. Из проекта его аэроплана следует, что под этим термином он понимал аэродинамические рули высоты и направления, которые применялись в авиации.
Кроме того, он высказал еще две идеи: разместить руль вне ракеты, поблизости от выходного сечения сопла двигателя, а также поворачивать саму камеру сгорания ракетного двигателя, точнее, – конец ее сопла [110] [с. 75].
Все эти идеи нашли применение в ракетной технике.
Обратим внимание, что это идеи изобретательских задач, на пути которых к практике лежала как раз конкретика: как это можно сделать? Представим себе, что К.Э. Циолковский задумался над вопросом о том, как повернуть конец камеры сгорания (а не саму эту камеру)? Разве осталось бы это его предложение в силе?
В этой своей работе он еще ничего не доказывает: он гадает, высказывает предположения. Он ничего не может вычислить, поэтому появляется интуитивный спектр предложений, выделить среди которых рациональные он, как правило, не может.
Как будет показано ниже, проект этой космической ракеты – научная фантастика, «сдобренная» видимостью научности, результатами расчетов.
К.Э. Циолковский на примере дирижабля уже понял, что нужно рассказывать людям привлекательные сказки, тогда обязательно появятся сторонники их осуществления. На этой позиции он и впредь будет стоять твердо при разработке космической философии, при разработке идеи о «вечно юной Вселенной», и в вопросах космогонии, биологии или, наконец, второго начала термодинамики.
Для решения проблемы движения ракеты (космических аппаратов) вокруг центра масс, он также предложил несколько элементарных решений.
Он считал, что если ракета при своем движении начинает вращаться вокруг ее центра инерции, нужно переместить внутри снаряда какую-нибудь массу. Для ракеты это предложение избыточно, а для космического корабля, вообще говоря, приемлемо, хотя и не конкурентоспособно.
К.Э. Циолковский в этой своей работе не разделял две разные задачи: управление движением ракеты, и управление движением космического аппарата. Поэтому он предлагает «употребить для этой цели (для управления движением ракеты) магнитную стрелку, или силу солнечных лучей, сосредоточенных с помощью двояковыпуклого стекла. Каждый раз, когда снаряд с пушкой (двигателем – Г.С.) поворачивается, маленькое и яркое изображение солнца меняет свое относительное положение в снаряде, что может возбуждать расширение газа, давление, электрический ток и движение массы, восстанавливающей определенное направление пушки (двигателя – Г.С), при котором светлое пятно падает в нейтральное, так сказать, нечувствительное место механизма» [110] [с. 75].
Все правильно: именно так и работает оптический датчик ориентации космического аппарата на Солнце, но никто еще не посчитал нужным использовать его на ракете, которая окажется неработоспособной при движении в атмосфере с облаками, закрывающими Солнце, или на космическом аппарате в тени Земли.
Правильно указал К.Э. Циолковский и еще один способ управления полетом ракеты. Он писал: «Основою для регулятора направления снаряда также может служить небольшая камера с двумя быстро вращающимися в разных плоскостях кругами (гироскопами – Г.С). Камера подвешена так, что положение, или, точнее, направление ее не зависит от направления пушки (двигателя – Г.С). Когда пушка поворачивается, камера в силу инерции, пренебрегая трением, сохраняет прежнее абсолютное направление (относительно звезд); это свойство проявляется в высшей степени при быстром вращении камерных дисков. Прицепленные к камере тонкие пружинки при поворачивании пушки меняют в ней свое относительное положение, что может служить причиною возникновения тока и передвижения регулирующих масс» [110] [с. 75].
Да, эта идея нашла самое широкое практическое применение, хотя она очевидна с тех пор, как было выявлено свойство волчка (гироскопа).
Если идеи К.Э. Циолковского в области динамики полета и управления движением ракеты были хотя и не оригинальны за редким исключением, но, тем не менее, более или менее состоятельны, что объясняется некоторой компетентностью их автора в области механики, то его суждения по теплопередаче и термодинамике были, в принципе, ошибочны.
Выше уже отмечалось, что в области теплопередачи К.Э. Циолковский был далеко не специалист, что стало причиной его ошибочных высказываний по теплообмену дирижабля. Естественно, что и в области ракетной техники его «тепловые» суждения не выдерживают никакой критики. Надо отметить, что вопрос этот принципиальный, поскольку само существование жидкостной ракеты зависит от возможности охладить ее двигатель (не будем пока затрагивать космический аппарат, или спускаемую головную часть ракеты), в камере которого развиваются беспрецедентные условия: температура – около 4000°С, давление – несколько десятков атмосфер (сейчас 200 атм), скорость истечения газов – до 4500 м/с. Удается найти способ решения этой проблемы – есть ракета, нет – все остальные рассуждения не более как абстрактные умозаключения.
Процитируем: «… труба (камера сгорания – Г.С.) может быть окружена кожухом, в котором циркулирует какой-нибудь жидкий металл; он передаст жар сильно нагретой части одного конца трубы другой ее части, охлажденной вследствие сильного разряжения паров», «… циркуляция … металлической жидкости в кожухе, окружающем трубы, необходима… для поддержания одной и той же невысокой температуры трубы, т.е. для сохранения ее крепости» [110] [с. 79].
К.Э. Циолковский, к сожалению, заблуждался, поскольку теплоноситель (жидкий металл) должен иметь возможность куда-то сбрасывать тепло, воспринятое от камеры сгорания. Таким холодильником, однако, не может служить выходная часть сопла, охлажденная из-за разряжения истекающих газов, поскольку теплоотвод с нее, в свою очередь, ничтожен (неорганизован). Этот способ охлаждения он будет предлагать и в дальнейшем, особенно в проектах реактивных двигателей.
Еще один способ охлаждения, рассмотренный им в этой статье, состоял в том, чтобы окружать баками с жидкими кислородом и водородом или кожухи с циркулирующим в них металлом, или непосредственно сами «трубы». При этом он полагал, что охлаждение будет осуществляться низкой температурой криогенных жидкостей [112] [с. 79].
В одноименной статье, опубликованной в 1911 году, он также писал, что «Взрывная труба (камера сгорания – Г.С.) … охлаждается низкой температурой жидкого кислорода и водорода, окружающих трубу»… [111] [с. 102].
Ошибка состоит здесь в том, что криогенные жидкости, образно говоря, не имеют теплоемкости. Они могут поглотить лишь незначительное количество тепла фазового перехода (т.е. при переходе из жидкого в газообразное состояние), после чего быстро наступает режим пленочного кипения, при котором образовавшийся газ оттесняет хладоагент от стенки и происходит ее прогар.
Интересно, что этот очевидно нецелесообразный метод охлаждения был практически применен в Германии специалистами Ракетенфлюгплатца на небольшой экспериментальной ракете «Мирак II», двигатель которой размещался в баке с жидким кислородом (рис. 12).
Рис. 12. Схема емкостного охлаждения двигателя ракеты «Мирак»
1 – бак с О2;
2 – камера;
3 – отверстие для подачи О2;
4 – отверстие для подачи бензина;
5 – бак с углекислотой;
6 – приемник углекислоты.
Попытка запуска ракеты, предпринятая весной 1931 года, привела к ее взрыву [66] [с. 20].
В 1934 году специалисты американского ракетного общества Б. Смитт и Г. Пендрей двигатель ракеты n3 (рис. 13) разместили в бензиновом баке, который, в свою очередь, был окружен баком жидкого кислорода. По свидетельству Г. Пендрея, в ходе работ с ракетой выяснилось, что ее «…нельзя было ни заправить, ни запустить, так как жидкий кислород, соприкасаясь с большой массой нагретого металла наружного бака, просто испарялся и выходил через заправочное отверстие столь же быстро или даже еще быстрее, чем поступал в бак» Г66, с. 201.
Рис. 13. Схема охлаждения двигателя ракеты АРО №3
1 – камера сгорания;
2 – сопло;
3 – форсунки горючего;
4 – форсунки окислителя;
5 – бак горючего;
6 – бак азота;
7 – бак окислителя.
К.Э. Циолковский считал возможным использовать и другие компоненты топлива: вместо водорода, например, жидкие углеводороды и ими окружать камеры двигателей. Но и эта идея ошибочна, поскольку режим пленочного кипения и здесь стоит непреодолимой преградой к получению более или менее заметного времени непрерывной работы двигателя.
И этот способ был применен в США на все той же ракете n3, где часть сопла была окружена баком с азотом [66] [с. 19]. А на ракете N 4 камера размещалась попросту в баке с водой (рис. 14).
Рис. 14 Схема охлаждения двигателя ракеты АРО №4
I – бак с водой;
2 – камера сгорания;
3 – четыре сопла (два сопла не показаны);
4 – магистраль подачи окислителя;
5 – магистраль подачи горючего;
6 – форсуночная головка.
Как показано в нашей работе [67], почти все пионеры космонавтики были не специалистами в теплопередаче, термодинамике, вообще в тепловых машинах, к классу которых, несомненно, относится и ракета. Поэтому ошибки в области тепловых процессов были для них обычным делом.
Были у К.Э. Циолковского и другие идеи по тепловой защите. Он, например, предлагал внутреннюю часть камеры выкладывать каким-нибудь «тигельным материалом» (смесь веществ) или огнеупорными материалами: углеродом, вольфрамом и пр.
Этот способ нашел широкое применение в 30-е годы в СССР, но из-за отсутствия материалов, пригодных для условий ЖРД, этот путь казался тупиковым. Только в 60-е годы в результате крупных успехов в физике твердого тела появились новые материалы, которые стали широко применяться на некоторых двигателях, имевших дополнительные способы охлаждения камер.
К сожалению, в изданиях [108] [110] по каким-то причинам пропущен абзац с самой целесообразной идеей по охлаждению ЖРД. К.Э. Циолковский писал: «Водород и кислород в жидком виде, прежде чем попасть в пушку, пройдут по особому кожуху вдоль ее поверхности, охладят ее, сами нагреются и тогда уже попадают в пушку и взрываются» [11] [11О, с. 34; 1О8, с. 1О].
Таким образом, налицо идея внешнего регенеративного проточного охлаждения ЖРД, явившегося основным методом предохранения материальной части двигателей всех известных ныне космических ракет. Редакторы указанных изданий опустили фразу с этой идеей, по-видимому, посчитав ее ошибочной, поскольку было непонятно как это водород и кислород будут проходить по кожуху: в перемешанном виде? Тогда это ошибочно. Желательно было бы, чтобы К.Э. Циолковский вместо соединительного союза «и» поставил бы разделительный союз «или», т.е. написал бы: «водород или кислород».
К сожалению, не являясь теплотехником, он сам не оценил по достоинству этот метод охлаждения и отказался от него, во всех своих последующих работах отдав предпочтение «охлаждению низкой температурой жидкого кислорода». Следует иметь ввиду, что этот метод требовал еще серьезного научного обоснования, поскольку возможность использования в качестве хладоагентов криогенных жидкостей была в то время далеко не очевидна, точнее: это считалось невозможным.
Остается также сожалеть, что этот метод не был своевременно оценен в СССР и в отношении других компонентов топлив (высококипящих), что привело к большим трудностям в решении проблемы охлаждения ЖРД. Отметим, что одного этого метода еще недостаточно для надежного охлаждения двигателей: его необходимо дополнить еще и внутренним охлаждением, т.е. такой организацией внутрикамерных процессов, при которой у огневой стенки камеры создается избыток одного из компонентов топлива и, как следствие этого, пониженная температура горения. Идею этого метода впервые высказал немецкий профессор Г. Оберт [198], но, как уже отмечалось, ее в Германии не оценили, и она вновь возродилась благодаря инженеру Польману, который предложил на ракете Фау-2 орошать спиртом (горючим) внутреннюю огневую стенку камеры.
Не владея термодинамическими расчетами, К.Э. Циолковский полагал, что сопло двигателя должно быть очень длинным (равным длине ракеты) и предлагал (с 1914 г.) скручивать его спирально (рис. 15). Это предложение само по себе делало ракету неработоспособной в связи с большими газодинамическими потерями и на трение, и на поворот потока газов, и из-за принципиально больших тепловых потоков в стенку камеры.
Таким образом, можно уверенно констатировать, что К.Э. Циолковский не нашел способа охлаждения двигателя его ракеты. А ведь это вопрос принципиальный, поскольку в его камере должны были сгорать самые калорийные топлива. Можно, конечно, предложить разместить Солнце в камере и считать состоявшимся изобретение космической ракеты. Однако любой специалист по патентной экспертизе, несомненно, задаст изобретателю вопрос о том, а как же предохранить эту камеру от сгорания, причем этот вопрос симметричен самому предложению и без его решения оно теряет всякий смысл.
Впрочем, К.Э. Циолковский в связи с проблемой охлаждения прямо писал: «… не я решу эти вопросы…» [110] [с. 79].
Вот, собственно, и все конструктивные идеи, изложенные в цитируемой статье [110]. Их суть состоит, в основном, в переносе известных в науке и технике технических решений на предлагаемую космическую ракету. Исключение составляет, видимо, идея газового руля в ракете, четко и осмысленно сформулированная К.Э. Циолковским. Далее Циолковский переходит к вопросам ракетодинамики, на которых мы остановимся весьма подробно, поскольку в литературе его вклад в эту область науки чрезвычайно деформирован и, конечно, в сторону завышения его успехов.