4. Атмосферная машина

We use cookies. Read the Privacy and Cookie Policy

4. Атмосферная машина

Ньюкомен

Недалеко от Модбери, где производил свои первые опыты с паровым насосом капитан Севери, в маленьком портовом городке Дартмуте жил в то время хороший кузнец и слесарь Томас Ньюкомен. В Дартмуте он родился в 1668 году, в Дартмуте же он и умер в 1729 году.

Ньюкомен не состоял членом Королевского общества, не издавал ученых книг. Он так мало привлекал к себе внимание современников, что о жизни его никто не сохранил никаких сведений, а когда много лет спустя выяснилось, какой это был замечательный мастер техники, оказалось уже невозможным не только восстановить его биографию, но не удалось даже разыскать его могилу.

Несомненно, это был предприимчивый и энергичный человек. Он выполнял заказы местных жителей в маленькой кузнице, стоявшей на краю города и окруженной огородом, где трудилась семья кузнеца.

По торговым делам Ньюкомен, очевидно, бывал в Лондоне, в разных других городах и, любознательный от природы, тем или иным путем учился, накапливал не только опыт, но и некоторые знания.

Оживленный портовый город Дартмут являлся в то же время торговым и промышленным центром графства Девоншир. Здесь, как и в соседнем графстве Корнуэльс, находилось немало рудников. Старое горе всех шахт, затопляемых подземными водами, Ньюкомен хорошо знал. Часто он думал о том, как освободить горняков от необходимости выкачивать насосом воду, вместо того чтобы вырубать уголь. Конечно, этот деревенский кузнец, живя в графстве, где имелось много рудников, по самой профессии своей должен был заниматься машинами Севери и помогать в установке этих машин. Еще чаще он возился с обыкновенными рудничными насосами. Тогда их приводили в движение рабочие. Угрюмый образ рабочего, однообразно то поднимающего руки вверх, то опускающего их вниз вместе с рукояткой рычага, прочно запечатлелся в мозгу кузнеца. Неудивительно, что паровой цилиндр Папена, производивший те же самые однообразные движения — вверх-вниз, — связался в его воображении с рабочим, откачивающим воду, и подсказал хорошую идею: заменить мускульную силу рабочего машиной Папена.

На ранней поре развития техники гораздо более ясен и доступен нашему пониманию творческий процесс конструктора и изобретателя, чем в наше время. Но сущность его одна и та же. Она с предельной краткостью и отчетливостью дана в известной формуле В. И. Ленина:

«Жизнь рождает мозг. В мозгу человека отражается природа. Проверяя и применяя в практике своей и в технике правильность этих отражений, человек приходит к объективной истине».

Это сказано в «Философских тетрадях» В. И. Ленина. Как везде и всегда у В. И. Ленина, ничего трудного для понимания в этих словах нет.

С элементами техники человек имел дело, разумеется, задолго до Папена и Ньюкомена. Но и ему приходилось уже применять в своей первобытной практике запечатленные в мозгу отражения общеприродной среды, его окружавшей. Он видел, скажем, дерево, упавшее с одного берега ручья на другой. По нему перебирались животные, переходил вслед за ними и он сам. А когда при необходимости перебраться через ручей не оказывалось упавшего дерева, человек сам валил его с помощью каменного топора или усилиями нескольких человек. Так, применяя в практике своей отраженную в мозгу природу и проверив не раз правильность этого отражения, человек приходил к идее простейшего, балочного моста.

Легко представить себе, какое бесконечное множество всевозможных отражений запечатлевается в мозгу человека каждый день, каждый час, каждую минуту. Правда, повторяясь изо дня в день, эти отражения только наслаиваются друг на друга, но в то же время все вокруг так изменчиво, что достаточно для работы мозга и новых отражений, поступающих в него через органы чувств.

И, конечно, таких отражений в мозгу тем больше, чем обширнее опыт человека, чем разнообразнее среда вокруг него.

Особое, всем известное свойство отпечатавшихся в мозгу отражений заключается в том, что мы можем, с одной стороны, отрывать их одно от другого, расчленять на части, а с другой стороны, можем произвольно соединять их, комбинировать, причем комбинировать и цельные отражения и отделенные части их. В природе, скажем, нет крылатого коня, нет женщины с рыбьим туловищем, но в нашем воображении они существуют как Пегас и русалка. Такого рода комбинации легко возникают в нашем сознании из имеющихся там отражений. Комбинирование отражений, имеющихся в нашем сознании, и есть уже творчество.

В той мере, в какой творческий процесс является процессом разделения или соединения отпечатавшихся в клетках головного мозга отражений, творческая способность присуща каждому человеку. Но и самые причудливые создания фантазии говорят нам о том, что «человек в своей практической деятельности имеет перед собой объективный мир, зависит от него, им определяет свою деятельность». Это тоже слова В. И. Ленина, взятые нами из его «Философских тетрадей».

Значит, мы ничего не можем придумать такого, что целиком или по частям не было бы ранее дано в наш мозг из окружающего нас мира. На примере Ньюкомена это видно очень ясно.

Откуда Ньюкомен узнал о паровом цилиндре Папена, мы не знаем, но в 1702 году он справлялся о нем у секретаря Королевского общества Гука. Гук не советовал Ньюкомену строить машину Папена. Он указывал на невозможность изготовить прибор так, чтобы поршень плотно прилегал к стенкам цилиндра.

Мысль о том, чтобы применить цилиндр Папена для работы с водяным насосом, конечно, пришла Ньюкомену уже в первый момент, когда он увидел паровой цилиндр с веревкой, перекинутой через блоки и поднимавшей груз: ведь Ньюкомену как раз нужно было тянуть поршень водяного насоса вверх!

Ньюкомен, мастер своего дела, меньше всего боялся трудностей изготовления частей машины. Убедившись в том, что атмосферная машина Папена не фантазия, а вполне подходящий для его цели двигательный механизм, и видя необходимость заменить насос Севери более удобной и выгодной водоотливной машиной, Ньюкомен взялся за ее постройку. Он привлек в компанию к себе водопроводчика Коули и принялся за дело.

Ньюкомен взял обыкновенный водяной насос и поставил к нему вместо рабочего паровой цилиндр Папена. Веревку с блоками он заменил балансиром, или, проще говоря, коромыслом. Шток поршня насоса Ньюкомен связал железной цепью с одним концом коромысла, а шток поршня парового цилиндра такой же цепью связал с другим концом. Коромысло опиралось в середине на прочный столб и свободно качалось на своей опоре.

Так в этой машине объединились обыкновенный рудничный насос, потреблявший энергию, и обращенный насос, производивший работу. Прямой насос при помощи атмосферного давления засасывал воду, а другой, обращенный, посредством вакуума, образовавшегося после конденсации пара, заставлял атмосферное давление производить работу.

Пар в свою машину Ньюкомен стал впускать из отдельного парового котла. Котел он поместил под цилиндром. Конечно, ему пришлось придумать целый ряд добавочных приспособлений, и дело не шло так гладко и просто, как может казаться. В 1711 году Ньюкомен и Коули поставили свою паровую машину на каменноугольных копях в Варвикшире, а затем стали снабжать своим «огнедействующим насосом» не только Англию, но и другие страны.

Хотя о жизни этих замечательных людей до нас дошло очень мало сведений, машины, построенные ими, сохранились в музеях разных стран.

Новую машину шахтовладельцы приняли очень хорошо.

Машина Ньюкомена работала таким образом. Поршень в паровом цилиндре поднимался как благодаря действию противовеса, расположенного на другом конце коромысла, так и благодаря давлению впускаемого под поршень пара. Когда поршень поднимался до своего крайнего, верхнего, положения, рабочий, стоявший у машины, прекращал впуск пара, закрывая кран паропровода, а цилиндр обливал холодной водой, открывая кран водяного бачка. Пар конденсировался, поршень опускался п, так как он был связан цепью с концом коромысла, тянул этот конец вниз.

Другой конец коромысла в это время поднимался и тянул вверх поршень водяного насоса. Затем под действием противовеса поршень насоса опускался вниз, в то же время поднимая поршень парового цилиндра, куда в это время рабочий снова впускал пар из котла. Значит, машина имела только один рабочий ход поршня — вниз. Вверх поршень поднимался, не совершая никакой полезной работы. Таких двойных движений машина делала не меньше шести — восьми в минуту.

Ньюкомен не мог взять патент на свое изобретение, так как конденсация пара была запатентована Севери, но, по общему соглашению, Севери включил в свой патент и изобретение Ньюкомена.

Новую машину шахтовладельцы приняли очень хорошо.

Несмотря на поочередное нагревание и охлаждение цилиндра, построенная Ньюкоменом машина работала несравненно успешнее, чем насосы Севери. Однако крупным недостатком ее был очень большой расход топлива. Например, для машины, установленной в Ковентри, топливо едва успевали подвозить.

Если применить для оценки атмосферных машин Ньюкомена наши нынешние нормы, то окажется, что мощность их равнялась примерно шести лошадиным силам. Коэффициент полезного действия их, то есть количество теплоты, превращенной в механическую энергию из всего тепла, полученного от сгорания топлива, составлял лишь один процент. Стало быть, девяносто девять подвод угля из ста, подвезенных к машине, тратилось непроизводительно, без прямой пользы делу.

Прожорливость машин не так уже бросалась в глаза там, где рядом лежали горы угля, как в каменноугольных копях. Огнедействующий насос давал возможность добираться до глубоких залежей, и с прожорливостью его в копях можно было мириться. Но, для того чтобы ньюкоменовская машина могла применяться с выгодой в других рудниках, не очень обеспеченных углем, надо было сделать ее более экономичной. Об улучшении атмосферных машин стали думать и Ньюкомен, и инженеры, и механики, имевшие с ними дело.

Есть хорошая русская пословица: «На ловца и зверь бежит». Это значит, что мелькнувшее перед глазами явление или предмет приводит к догадке, к открытию только тогда, когда мы сами ищем отражение, которое помогло бы нам в нашем деле, в нашей заботе. Иначе мы не обратим на него внимания, даже не заметим его, как не замечаем, скажем, белок в лесу, если ищем грибы, и, наоборот, не видим грибов, если охотимся на белок!

Одно наблюдение позволило Ньюкомену, все время думавшему об усовершенствовании своей машины, внести в нее важное улучшение. Однажды он заметил, что как будто без всяких видимых причин машина начала работать быстрее, чем обычно. Ньюкомен заинтересовался этим явлением и стал внимательно осматривать механизм. Он увидел, что поршень, неплотно пригнанный к цилиндру, пропускает при обливании струю воды в самый цилиндр. Такое вбрызгивание холодной воды в самый цилиндр вело, оказывается, к чрезвычайно быстрой конденсации пара. От этого и ускорялась работа машины.

Ньюкомен воспользовался своим наблюдением. Теперь, строя новые машины, он не стал обливать водой цилиндр, как раньше, а начал вбрызгивать воду внутрь цилиндра, что, кстати сказать, предложил и Дезагюлье в 1715 году.

Машины Ньюкомена стали работать много быстрее и экономичнее благодаря внесенному им изменению в конструкцию. Можно ли, однако, считать, как считали авторы старых книг по истории техники, что внесенное Ньюкоменом усовершенствование является делом счастливого случая и не составляет заслуги конструктора?

Кладя непроходимую пропасть между «душой» и телом, отрицая зависимость нашего мышления от окружающего мира, от воздействия общеприродной и социальной среды, авторы тех книг не видели связи между случайностью и закономерностью, между случаем и необходимостью. Известный русский химик академик П. И. Вальден утверждал даже в одной из своих книг, что «почти все великое, что у нас имеется и в науке и в технике, главным образом найдено при помощи случая».

Но вот перед нами типично «случайная» находка Ньюкомена, а между тем ничего случайного в ней мы не видим, все закономерно, все необходимо: Ньюкомен горит желанием усовершенствовать свою машину; он постоянно наблюдает ее работу; следит за исправностью механизма; каждое изменение в ее работе отражается в его мозгу. В поисках решения своей задачи конструктор обращается к запечатлевшимся в мозгу отражениям, то расчленяя их на части, то, наоборот, соединяя одно с другим. Комбинируя их целостными или по частям, он проверяет затем правильность этих комбинаций в технике и приходит к объективной истине: вводить воду для охлаждения цилиндра в самый цилиндр выгоднее, нежели обливать цилиндр снаружи!

Никакого прибежища для случайности тут нет. Весь процесс развивается по ясной формуле В. И. Ленина:

«От живого созерцания к абстрактному мышлению и от него к практике — таков диалектический путь познания истины, познания объективной реальности».

В дальнейшем мы увидим, что творческий процесс далеко не всегда развивается так прямо и непосредственно, как это было у английского кузнеца. Отдельные звенья этого процесса часто остаются скрытыми и для окружающих и для самого творца. Иногда они просто позабываются, иногда ускользают от наблюдения: тогда говорят, что решение найдено интуитивно, бессознательно, чутьем. Бывает и так, что конструктор сам скрывает подробности, приведшие к открытию, чтобы не упоминать о работах своих предшественников или чтобы придать большее значение своей работе.

Принадлежность к тому или другому ремесленному цеху обязывала их членов тщательно скрывать свой опыт и приемы от конкурентов. Цеховые секреты составляли такую тайну, что, например, наследникам англичанина Дудлея удалось держать в секрете его способ плавки железной руды на каменном угле целое столетие, до тех пор, пока способ этот не был найден заново другими.

В капиталистическом обществе изобретатель вынужден, чтобы не лишиться выгод от своего открытия, таиться ото всех, не то что рассказывать о нем во всех подробностях. Так что вуаль таинственности, загадочности и недоступности на творческий процесс в значительной мере накидывают сами люди, называя «случаем» закономерное вмешательство объективного мира в творческий процесс.

Вез такого прямого пли косвенного вмешательства со стороны живой природы или созданных руками человека конструкций вряд ли могла родиться и тем более осуществиться мысль об устройстве автоматического распределения пара и воды в машинах Ньюкомена. Говорят, что такую мысль подал изобретателям один бойкий мальчик, по имени Гемфри Поттер. Его приставили к машине Ньюкомена в Корнуэльсе открывать и закрывать краны. Один из этих кранов впускал пар из котла в цилиндр, а другой подавал из бачка воду в цилиндр. Скучая за своей однообразной работой, мальчуган будто бы сообразил, что ее может выполнить сама машина, в то время как он будет читать книжки или играть в бабки сам с собой. Для этого он соединил веревочками рукоятки кранов с движущимися частями машины. Проделал он все это с таким расчетом, чтобы машина без всякой его помощи стала сама аккуратно и своевременно открывать и закрывать краны.

Вряд ли автоматическое парораспределение было делом рук мальчика. Идею поручить самой машине открывать и закрывать вовремя краны высказывал уже Лейбниц в одном из писем к Папену по поводу его машины. Его идеей, конечно, могли воспользоваться и конструкторы ньюкоменовских машин. Автоматическое парораспределение, кстати довольно сложное по конструкции, ввел в 1718 году инженер Бейтон. Изобретение автоматического распределения воды и пара имело огромное значение, так как освобождало машину от надсмотрщика.

Значительные усовершенствования в машину внес инженер Смитон, выдающийся английский конструктор. Он долго изучал машину Ньюкомена на работе, а выяснив причины ее неэкономичности и маломощности, перестроил ее. Он стал с большей точностью пригонять поршень к стенкам цилиндра, чтобы устранить зазоры, в которые мог уходить рабочий пар, поставил дополнительный паровой котел, чтобы увеличить мощность машины, и урегулировал качания коромысла.

В машинах, построенных Смитоном, расход пара уменьшился вдвое. В общем, как видите, паровая машина с первых же шагов своего развития проходила через много рук, и над созданием ее трудились не только французы и англичане. В Германии распространению паровых машин особенно содействовал механик Леупольд, выпустивший в 1724 году сводное описание их устройств. В своем сочинении Леупольд не только рассказывает об известных ему атмосферных водоотливных машинах, где водяной пар применяется главным образом лишь для получения вакуума, но и высказывает снова мысль о том, что давление пара может работать само по себе в цилиндре с поршнем.

Постепенно усовершенствованная водоотливная машина Ньюкомена все больше и больше распространялась. В середине XVIII века в одном только Ныокестле, центре углепромышленной Англии, насчитывалось шестьдесят таких машин. Изобретение Ньюкомена получило известность далеко за пределами Англии. Даже в далекой России, на осушительных работах в Кронштадте, применялся огнедействующий насос Ньюкомена. Его выписало из Англии правительство Екатерины II.

Конструктивно водоотливная машина Ньюкомена состояла из двух самостоятельных частей, объединенных коромыслом: старинного водяного насоса на одном конце и парового цилиндра Папена с отдельным котлом — на другом. Казалось, теперь уже нетрудно было догадаться, что паровой цилиндр, производящий при помощи атмосферного давления, огня и пара движущую силу, может не только качать воду насосом, но и совершать какую-нибудь другую полезную работу. Прошло, однако, еще много времени, прежде чем паровые машины получили применение в других областях.

В чем же тут дело? В недостатке знаний, в слабости технических средств, в ошибках изобретательской мысли?

Да, отчасти в этом, но не только в этом! Дело заключается в том, что техника всегда идет на поводу у промышленности, хотя в то же время толкает хозяйство вперед, содействуя развитию производительных сил. Всякое изобретение вырастает из потребностей своего времени и, в свою очередь, порождает новые потребности. И вот, лишь идя навстречу потребностям своего времени, угадывая, чувствуя, понимая нужду хозяйства, техника правильно и успешно разрешает свои задачи.

Потребность хозяйства страны, запросы промышленности, требования культуры определяют полет творческой фантазии, направляют, сосредоточивают мысль изобретателя. Только в таких условиях изобретатель оказывается способным преодолевать и несовершенство технических средств, и недостаточность теоретических знаний, и косность собственной мысли.

Техника и промышленность, мысль изобретателя и запросы времени живут в прочной, органической связи друг с другом. Нет ничего случайного в том, что паровая машина рождалась у воды, у колодца, у водяного насоса. Водоотливная машина была необходима промышленности. Но водоотливная машина, спасая шахты от затопления, освобождая горняков для их прямой работы, тем самым способствовала развитию горного дела, добыче угля, добыче железной руды. Уголь становился дешевле, спрос на металл рос благодаря появлению разного рода машин, в том числе и водоотливных, а вместе с ростом машиностроения, естественно, развивалась металлургия.

Металлурги, подчиняясь королевскому указу, перешли при выплавке железных руд на каменный уголь, точнее — на кокс. Коксовые же домны требовали более сильного и равномерного дутья, чем древесно-угольные. Прежние воздуходувные мехи стали служить плохо.

Уже одно то обстоятельство, что воздуходувным мехам, как и водяному насосу, нужно прямолинейно-возвратное движение, наводило на мысль поставить двигательный механизм водоотливной машины Ньюкомена к мехам. Так же, впрочем, естественно приходила идея вместо небольших кожаных мехов построить солидную поршневую воздуходувку, применив для новой цели старую техническую форму цилиндра и поршня. Важно, что металлургическая промышленность столкнулась с необходимостью давать сильный и непрерывный поток воздуха в печь. Как только такая задача обнаружилась, тотчас конструкторы и инженеры взялись за ее решение.

Первую попытку сделали англичане. В 1750 году на железоделательных заводах Дерби была установлена поршневая воздуходувка, которая работала через коромысло от парового цилиндра с отдельным котлом, как в паровом насосе Ньюкомена. Воздуходувка давала достаточно воздуха, но дутье производилось с разрывами, а не сплошным потоком. Ведь ньюкоменовский двигательный механизм имел только один рабочий ход и к тому же требовал времени на конденсацию пара. Чтобы получить постоянный поток воздуха, пришлось поставить перед печью дополнительный резервуар, где накапливался некоторый запас воздуха.

Новая установка оказалась такой громоздкой и сложной, что металлурги не последовали примеру Дерби.

Чем больше развивалась промышленность, росли производительные силы, тем чаще то тут, то там возникала потребность в движущей силе для тех или иных нужд предприятия.

Изобретение прядильного, ткацкого станка и других машин-орудий положило в последней трети XVIII века начало промышленному перевороту, дальнейшее развитие которого определил уже механический двигатель.

Казалось бы, что страны, вступившие на путь промышленного развития ранее других, и должны были создать эту машину — двигатель. Однако не там, а именно в России, позднее других стран вступившей на этот путь, сделан был первый шаг к созданию универсального двигателя, с которым всецело связан дальнейший ход промышленного переворота. Это тем более замечательно, что идея универсального двигателя возникла у первого же русского теплотехника, в лице которого русская техника властно заявила о своем существовании.

Факт этот характеризует не только высокий уровень развития некоторых отраслей промышленности в России того времени, но и дает нам представление о самобытном, своеобразном складе и направлении русской научно-технической мысли.