ГЛАВА 7. От древней плесени к современному чуду: открытие пенициллина

We use cookies. Read the Privacy and Cookie Policy

ГЛАВА 7. От древней плесени к современному чуду: открытие пенициллина

Людям, которые столетиями селились на склонах и у подножия этой горы высотой около 900 метров, эти места наверняка казались раем. Здесь идиллическая красота природы соединяется с изобилием земных плодов. Гора возвышалась над Неаполитанским заливом на юго-западном берегу Италии. Ее склоны покрывали виноградники и фруктовые сады, у подножия раскинулись пшеничные поля. До самой вершины поднимались дубовые и березовые рощи, в которых водились олени и кабаны, а на пастбищах щипали сочную траву молочные козы. Больше 1000 лет этих мест не касалась беда. Неудивительно, что жители двух небольших городков Помпей и Геркуланума, расположенных на западном и юго-восточном склонах горы, даже не догадывались, что вся эта тихая идиллия покоится на бомбе замедленного действия — вулкане, который однажды проснется и уничтожит все вокруг в приступе смертоносной ярости.

Утром 24 августа 79 г. н. э. вулкан Везувий, до этого почти не подававший признаков жизни, внезапно пробудился от векового сна и выбросил на 15 километров в небо «ужасное черное облако» ядовитого газа, золы и пепла. В течение дня темное облако продвинулось к юго-западу, в сторону Помпей, и засыпало город вулканическими обломками. К концу дня улицы были накрыты «одеялом» пепла толщиной около метра. Одни жители в ужасе бежали из города, другие остались и пытались найти убежище под крышами домов. Свою судьбу они встретили около 6 часов следующего утра, когда несколько последовавших одно за другим извержений обрушили на город потоки раскаленной лавы, пепла и ядовитого газа, унеся жизни примерно 2000 из 20 тыс. жителей.

К этому времени Геркуланум, расположенный примерно в 15 километрах от Помпей на другом склоне Везувия, уже был опустошен. Несколькими часами ранее, вскоре после полуночи, по западному склону горы на скорости более 200 км/ч спустилась лавина вулканических обломков. Всего за несколько секунд Геркуланум оказался погребен под слоем раскаленного пепла глубиной 30 метров. Большая часть жителей уже успела спастись, однако через 2000 лет после трагических событий археологи нашли тех, кому повезло меньше. В 1982 г. ученые обнаружили на побережье в остатках лодочных сараев 250 скелетов, застывших в разных позах. В силу необыкновенных обстоятельств гибели — мгновенное захоронение под слоем тонкой вулканической пыли температурой около 600 °C — останки сохранились практически идеально.

Примите две фиги и перезвоните утром

Неудивительно, что, начав изучать в 1980-х руины древнего Геркуланума, археологи получили массу сведений о повседневной жизни древних римлян. Среди находок были отлично сохранившиеся деревянные сундуки и шкафы, остатки пищи, в том числе оливковое масло, сливовый джем, сушеный миндаль и грецкие орехи, козий сыр, вареные вкрутую яйца, вино, хлеб, сушеные фиги и гранаты. Неудивительно и то, что, вооружившись современными научными инструментами, исследователи смогли узнать ряд красноречивых подробностей о состоянии здоровья и болезнях людей, чьи скелеты были обнаружены на побережье. Они нашли расчесанные язвы на голове у человека, которого мучили вши; поврежденные ребра у того, кто всю жизнь дышал спертым воздухом около кухонной жаровни; деформированные в результате ношения римских сандалий ступни.

Однако удивительнее было то, чего ученые не нашли. Они не нашли следов инфекционных заболеваний.

В одной из статей в журнале International Journal of Osteoarchaeology от 2007 г. говорится, что изучение 162 из 250 найденных близ Геркуланума скелетов показало: неспецифические инфекционные заболевания были крайне редки. Эта находка стала «настоящей загадкой»: подобные заболевания, наоборот, намного чаще встречались у людей в прошлом в силу неудовлетворительных санитарных условий того времени.

Почему же инфекционные заболевания почти не встречались у жителей древнего Геркуланума? Раскрыть эту тайну помогло более пристальное изучение рациона горожан. Исследовав под микроскопом сушеные гранаты и фиги, ученые обнаружили, что они заражены бактерией Streptomyces. Это обширный и широко распространенный род в целом безвредных бактерий, обладающих рядом полезных свойств. Прежде всего они в изобилии водятся в почве, где вырабатывают вещества, играющие важную роль в экологических процессах и помогающие разложению растительных и животных останков и формированию почвы. Не менее важно и то, что на основе бактерий Streptomyces сегодня производят огромное количество лекарственных средств и 2/3 антибиотиков, которые используют в медицине и ветеринарии. Один из них, тетрациклин, сегодня применяют для лечения инфекционных заболеваний, в том числе HP-инфекции, акне, инфекций мочевыводящих путей.

Итак, исследовав останки, ученые нашли подтверждение тому, что жители Геркуланума подвергались действию тетрациклина. Могли ли они получать его, потому что ели зараженные бактериями Streptomyces фрукты? Исследователи установили, что бактериями были заражены все гранаты и фиги без исключения. Причиной, вероятно, послужил древнеримский метод консервации фруктов: их сушили, пересыпав соломой. Это позволило раскрыть первую загадку. Употребляя в пищу зараженные Streptomyces гранаты и фиги, древние римляне неосознанно вводили в организм дозу тетрациклина и тем самым защищали себя от инфекционных заболеваний. Но тут возникает еще один вопрос: в самом ли деле они делали это неосознанно?

Согласно историческим свидетельствам, в Римской империи того времени врачи советовали пациентам лечиться от инфекционных заболеваний, употребляя в пищу те или иные продукты. Фиги и гранаты входили в их число. Например, в I веке н. э. врач Авл Корнелий Цельс лечил с помощью гранатов тонзиллиты, стоматиты и прочие инфекции. Другие римские врачи рекомендовали фиги от пневмонии, гингивита и кожных инфекций. У нас нет достоверных свидетельств того, что врачи древнего Геркуланума намеренно «прописывали» больным начиненные бактериями фрукты для лечения инфекций, но все же возникает вопрос: не могут ли эти находки подсказать нам, кто же открыл «первый» антибиотик?

* * *

Впрочем, историки медицины могут не беспокоиться. Сушеные фиги, древние римляне и бактерии Streptomyces не претендуют на честь открытия, которую традиционно делят между собой трое исследователей, спустя 2000 лет (в 1945 г.) получившие Нобелевскую премию в области медицины и физиологии за открытие первого антибактериального препарата — пенициллина.

Почести, которые воздают этим ученым, заслужены. Пенициллин был впервые открыт Александром Флемингом в 1928 г., позже очищен Говардом Флори и Эрнстом Чейном, которые получили более мощную его разновидность, пригодную для широкого использования, и серьезно повлиял на жизнь общества. Он превратил смертельные инфекционные болезни в легко излечимые и помог спасти миллионы жизней. Антибиотики (общее название лекарственных средств, которые подавляют рост или уничтожают микроорганизмы) стали классической «чудесной пилюлей» XX века и одним из величайших прорывов в истории медицины.

Однако в истории антибиотиков есть свои курьезы и противоречия. Открытие бактерий — возбудителей опасных заболеваний подтолкнуло ученых к поискам антибиотиков для борьбы с ними. Сегодня мы пали жертвой собственного успеха. Злоупотребление антибиотиками заставляет ученых искать новые средства для лечения тех же болезней.

Предпосылки: от целителей древности до войны микробов

Многие люди, представляя себе, как Александр Флеминг нашел пенициллин, рисуют перед мысленным взором неаппетитное зрелище: темно-зеленые пятна микроскопического грибка, который без спроса заводится на влажных занавесках в душевой, старом ковре или в буханке хлеба. Хотя многие антибиотики, в том числе пенициллин, действительно вырабатываются плесневыми грибками, Флеминг сделал свою уникальную находку не в хлебнице и не в отсыревшей ванной, а в стеклянной чашке в своей лаборатории. Однако неудивительно, что первый антибиотик выделен из плесени. Ведь лечебные силы этой пушистой грибковой культуры были давно известны целителям всех времен и народов.

Первое письменное упоминание об исцеляющей силе плесени имеется в старейшем медицинском документе — папирусе Эдвина Смита, датированном приблизительно XV веком до н. э., авторство которого приписывают древнеегипетскому лекарю Имхотепу. В этом древнем сочинении целителям советуют при лечении открытых ран накладывать компресс из свежего мяса, меда, растительного масла и «заплесневевшего хлеба». Более поздние исторические документы сообщают, что просветленные монахи в Средней Азии накладывали на поверхность ран плесневые препараты, состоящие из «разжеванного ячменя и яблока», а также что в некоторых областях Канады советовали при респираторных инфекциях съесть ложку заплесневелого варенья. Во времена не столь давние (в 1940-х) один врач сообщил «широко известный факт»: в некоторых странах Европы в крестьянских домах всегда держат буханку заплесневелого хлеба, чтобы лечить членов семьи от синяков и порезов. Врач написал: «Тонкий ломтик, срезанный с внешней части буханки, растирают в кашицу вместе с водой, накладывают на рану и перевязывают. Тогда порез заживает без инфекции».

Однако терапевтическое использование плесени в народной медицине не сыграло никакой роли в современном открытии антибиотиков. Лишь в конце XIX века ученые, заинтригованные открытием бактерий и микробной теории, начали задумываться о том, нельзя ли вылечить болезнь, натравив одних микробов на других.

Один из первых отчетов по этому вопросу оставил Джозеф Листер, врач, впервые использовавший антисептики для предотвращения послеоперационных инфекций. В 1871 г. он экспериментировал с образцом плесени под названием Penicillium glaucum (родственным тому виду, который приведет к открытию пенициллина, но не слишком на него похожим) и сделал неожиданное наблюдение: в присутствии плесени бактерии, которые обычно деловито сновали взад-вперед по предметному стеклу микроскопа, становились «сравнительно медлительными», а некоторые даже «полностью замирали». Листер был так заинтригован, что намекнул в письме к брату, что хотел бы выяснить, оказывает ли плесень подобное воздействие в человеческом организме. «Если представится подходящий случай, — писал Листер, — я применю Penicillium glaucum, чтобы установить, подавит ли плесень рост болезнетворных организмов в человеческих тканях». Но хотя Листер очень близко подошел к эпохальному открытию, его исследованиям что-то помешало, и первооткрывателем он так и не стал.

Через несколько лет, в 1874 г., английский врач Уильям Робертс сделал похожее наблюдение, указав, что столкнулся с трудностями, выращивая бактерии в присутствии той же плесени. «Казалось, — писал он, — что этот грибок… сдерживает размножение бактерий». Через год врач Джон Тиндалл в более красочных выражениях описал вражду между Penicillium и болезнетворными бактериями. «Мне открылись необычайные картины сражений и побед в беспощадной войне, которую ведут бактерии с Penicillium», — писал он. Но и Тиндалл упустил свой шанс прославиться. Он не стал выяснять, как грибки Penicillium атакуют бактерии и не вырабатывают ли они при этом некое важное вещество. Он остановился на ошибочном предположении, будто плесень «душит» бактерии.

Вскоре подобные наблюдения сделали и другие ученые. К их огромному удивлению, маленький безмолвный мир микроорганизмов на поверку оказался театром ожесточенных военных действий. Причем войны шли не только между плесневыми грибками и бактериями, но и между бактериями разных видов. В 1889 г. французский ученый Жан-Поль Вюймен, на которого эти битвы произвели большое впечатление, придумал новый термин антибиоз («против жизни»), ставший предзнаменованием будущего великого прорыва.

Учитывая, что интригующих находок к тому моменту уже хватало, возникает вопрос, почему же Флеминг открыл первый антибиотик лишь в 1928 г. — тридцатью годами позже? Историки отмечают сразу несколько факторов, которые могли отвлечь ученых от поиска лекарства для борьбы с инфекциями. Во-первых, в конце XIX — начале ХХ веков медикам вскружили голову другие громкие открытия недавнего времени, в том числе антисептики (химические препараты, способные убивать бактерии на поверхности организма, но непригодные для употребления внутрь) и вакцины. Более того, знания ученых XIX века о грибках были не всегда достоверными. Фактически во время ранних исследований бактерицидных свойств плесени экспериментаторы без разбора брали для опытов любого представителя рода Penicillium — а то и вовсе любой зеленый плесневый грибок.

Но оказалось, что плесень Penicillium, которая привела к открытию антибиотиков, — не обычный грибок, который растет у вас на стене в ванной. Это был специфический редкий штамм, а антибактериальное вещество пенициллин, которое он вырабатывал, оказалось недолговечным и с трудом поддавалось изоляции. Честно говоря, то, что Флеминг вообще его открыл, было настоящим чудом.

Веха № 1

«Занятно…»: неправдоподобное стечение счастливых обстоятельств и открытие пенициллина

Многие предпочитают не задумываться о том, что, кроме полчищ бактерий, нас окружают столь же многочисленные невидимые споры плесени, которые день и ночь проникают через открытые окна и двери, ища поверхности, на которых можно закрепиться и начать расти. Примерно так думал Александр Флеминг, когда летом 1928 г. вернулся из долгого отпуска и обнаружил, что в стеклянной чашке Петри, которую он оставил в углу лабораторного стола, что-то выросло. Флеминг был врачом и работал бактериологом в прививочном отделении больницы святой Марии в Лондоне. Перед отъездом он высадил в чашку Staphylococcus aureus для своего исследовательского проекта. Возвратившись из отпуска, Флеминг рассеянно взял в руки опытную склянку, снял крышку и уже собирался мимоходом показать содержимое коллеге, когда что-то привлекло его внимание. Он заглянул внутрь и произнес: «Занятно…»

Флеминга не удивило, что поверхность чашки заросла десятками колоний стафилококка. Это входило в условия его эксперимента. Не удивило его и то, что с другой стороны разрослось неровное пятно плесени. Все-таки его не было в лаборатории целых две недели, к тому же он все равно собирался избавиться от этой чашки. Но его внимание привлекло то, чего он не увидел. Колонии бактерий покрывали большую часть стеклянной посуды, и только в одной области они еле шевелились, образуя полупрозрачное кольцо вокруг того, что им явно не нравилось, — гигантской колонии плесени. Более того, бактерии, находящиеся ближе всего к ней, очевидно уже погибли, будто плесень обладала каким-то мощным оружием, позволявшим ей уничтожать бактерии.

К счастью, Флеминг, всего несколько лет назад открывший лизоцим (естественное антибактериальное вещество, которое может вырабатывать ряд тканей организма), способен был видеть главное. Позже он писал: «Это было необыкновенное и совершенно неожиданное зрелище. Нужно было его изучить как можно внимательнее». Следующие несколько месяцев Флеминг занимался именно этим: выращивал плесневые культуры и изучал, как загадочное желтое вещество, которое они производят, влияет на разные виды бактерий. Он вскоре понял, что плесень относится к специфическому роду Penicillium и что вещество, которое она вырабатывает, способно подавить и уничтожить не только стафилококк, но и многие другие виды бактерий. Через несколько месяцев, в 1929 г., он назвал это вещество «пенициллин» и опубликовал свою первую статью о его замечательных свойствах.

Что же делало пенициллин таким необыкновенным? Прежде всего, в отличие от лизоцима, открытого Флемингом несколькими годами ранее, он останавливал и уничтожал множество видов бактерий, в том числе стафилококк, стрептококк, пневмококк, менингококк, гонококк и дифтерийную палочку. Более того, пенициллин отличался необыкновенной мощностью. Даже в неочищенном состоянии его можно было развести в 800 раз, прежде чем он терял способность подавлять рост стафилококка. В то же время он был примечательно не токсичным по отношению к клеткам человеческого организма, в том числе белым кровяным тельцам, несущим главную ответственность за сопротивление организма инфекции.

Но самым удивительным в этой истории были даже не антибиотические свойства пенициллина, а то, что Флеминг вообще его обнаружил. Ведь, несмотря на уверенность самого Флеминга, споры плесени, вырабатывающей пенициллин, не влетели однажды летним днем, пока он был в отпуске, в открытое окно его лаборатории, чтобы приземлиться в чашку. Установленные позже факты показали, что для открытия нужно было, чтобы в цепочку неправдоподобных счастливых случайностей соединилось множество факторов: появление спор плесени именно этого вида; время, которое Флеминг выбрал для того, чтобы отправиться в отпуск; и даже погода, стоявшая в те дни.

Любопытная загадка мигрирующей плесени

Эта загадка прояснилась несколько десятков лет спустя, когда ученый, работавший в одном отделении с Флемингом в конце 1920-х, вспомнил, что окна его лаборатории обыкновенно держали закрытыми — в основном для того, чтобы стоявшая на подоконнике стеклянная посуда, в которой выращивали микробные культуры, не падала на головы прохожим.

Но если споры плесени не прилетели снаружи, то откуда же они взялись?

Как оказалось, этажом ниже под лабораторией Флеминга располагалась лаборатория еще одного ученого, К. Дж. Ла Туша. Ла Туш был микологом, специалистом по грибковым культурам, и в его «беспорядочном хозяйстве» как раз имелось 8 штаммов плесени Penicillium. Один из них, как выяснилось позже, был идентичен плесени Флеминга. Но если окна были закрыты, как споры плесени из лаборатории Ла Туша поднялись по лестнице и попали в чашку на столе Флеминга? Невероятно удачное стечение обстоятельств: лаборатории Флеминга и Ла Туша располагались в одном лестничном пролете, и двери с обеих сторон почти всегда были открыты. Таким образом, споры из лаборатории Ла Туша поднялись по открытому лестничному колодцу и осели в чашке. Кроме того, они появились в лаборатории именно в тот момент, когда Флеминг снимал крышки с чашек, либо заселял в них бактерии стафилококка, либо, возможно, когда он рассматривал их под микроскопом.

Но и на этом необыкновенные совпадения в открытии Флеминга не заканчиваются. Один специалист поначалу не мог повторить эксперимент: взятые им образцы пенициллина почему-то не оказывали на стафилококк никакого воздействия. Эта загадка была разрешена позже. Ученые установили, что пенициллин способен действовать на бактерии только в период их активного роста. То же верно и для человеческого организма: пенициллин эффективен только против делящихся бактерий. Возникает вопрос: как именно споры плесени Флеминга умудрились прорасти и выработать пенициллин именно в то время, когда бактерии стафилококка делились?

В 1970 г. Рональд Хейр, профессор бактериологии из Лондонского университета, предложил необычное, но вполне убедительное объяснение. Изучив погоду и температурные условия того периода, когда Флеминг был в отпуске, Хейр обнаружил, что бактериальная культура, выращенная им, вероятнее всего, вступила в контакт с плесенью в конце июля, когда погода была достаточно прохладной. В этих условиях споры смогли прорасти и начали вырабатывать пенициллин. Судя по прогнозам погоды, в следующие несколько дней стало теплее — и колония стафилококка тоже начала расти. Однако плесень к тому времени была уже достаточно зрелой, чтобы начать выработку пенициллина и уничтожить находящиеся поблизости бактерии. Если бы в те дни стояла другая погода, плесень могла бы начать вырабатывать пенициллин слишком поздно — уже после того, как бактерии прекратят рост и станут невосприимчивы к ее антибактериальному воздействию. И тогда Флеминг, возвратившись из отпуска, не увидел бы в своей лабораторной посуде ничего «занятного».

И, наконец, какова вероятность того, что споры, которые случайно опустились в выращенную Флемингом культуру, будут принадлежать виду плесени, способному к производству пенициллина, а не какому-то другому грибку? Может показаться, что здесь нет ничего необычного, особенно учитывая, что споры прилетели из лаборатории специалиста по грибковым культурам, однако подумайте вот о чем: в 1940-х ученые развернули обширные поиски, пытаясь найти другие виды плесени, способные вырабатывать пенициллин. Было протестировано около 1000 образцов, и только три из них — плесень Флеминга и два других вида — оказались производителями высокоактивного пенициллина.

* * *

Открытие пенициллина в 1928 г. считается стартовой точкой революционной истории антибиотиков. Но если судить по тому, как мало внимания получило это открытие в следующие десять лет, вы никогда бы об этом не догадались. Некоторые ученые прочли статью Флеминга, напечатанную в 1929 г., и были заинтригованы, а несколько врачей опробовали новое средство на своих пациентах, но пенициллин вскоре оказался почти забыт. Как позже объяснял Флеминг, его желание продолжать исследования угасло, столкнувшись с рядом препятствий. Во-первых, пенициллин был нестабильным и терял свой потенциал уже через несколько дней. Во-вторых, Флемингу недоставало химического образования, чтобы очистить пенициллин и создать более мощную форму. И, наконец, не исключено, что клинический интерес Флеминга погасили коллеги-врачи, у которых не вызвало большого энтузиазма предложение лечить пациентов каким-то желтым веществом, полученным из заплесневелого бульона. Итак, Флеминг вскоре забросил пенициллин и вернулся к другим своим проектам.

Пройдет почти десять лет, прежде чем пенициллин «откроют заново», но за это время человечество успеет пройти еще два важных этапа. Один из них — первое достоверное «исцеление» с помощью пенициллина, совершенное врачом, чьего имени сегодня почти никто не знает.

Веха № 2

Не успеешь и глазом моргнуть: первые успешные (но забытые) случаи лечения

Доктор Сесил Пейн еще студентом попал на лекцию Флеминга, прочел его статью и заинтересовался пенициллином. Через несколько лет, работая патофизиологом в больнице святой Марии, Пейн решил повторить опыт Флеминга самостоятельно. Примерно в 1930 г. он написал Флемингу с просьбой выслать ему культуры плесени Penicillium, и вскоре после того, как тот исполнил его просьбу, смог сам получить необработанные образцы пенициллина. Оставалось найти пациентов. Позже Пейн вспоминал: «У меня был приятель-окулист, и я спросил, не хочет ли он опробовать новое средство».

Этот врач, доктор А. Б. Натт, был ассистентом хирурга в Шеффилдской Королевской больнице и, очевидно, довольно доверчивым человеком. Он разрешил Пейну применить пенициллин к двум новорожденным младенцам, которые страдали от офтальмии новорожденных — глазной инфекции, полученной в процессе родов. Согласно врачебным записям, у трехнедельного мальчика наблюдались «обильные выделения из глаз», а у девочки шести дней от роду глаза были «полны гноя». Пейн нанес детям пенициллин и вспоминал затем: «Он сработал как по волшебству!» Дети продемонстрировали существенное улучшение состояния в течение 2–3 дней. Более того, позже Пейн дал пенициллин шахтеру, которому в поврежденный глаз попала инфекция. Лекарство «вычистило инфекцию, не успел он даже глазом моргнуть».

Но, несмотря на эти впечатляющие результаты, Пейн забросил пенициллин, когда его перевели в другую больницу, занявшись карьерой и другими исследованиями. Он не опубликовал отчет о своих находках и получил косвенное признание в связи с открытием пенициллина лишь много лет спустя. Когда однажды его спросили, на какое место он ставит себя в истории пенициллина, Пейн с сожалением ответил: «Ни на какое. Я был ужасно глуп и не придал значения тому, что видел своими глазами… Если бы мне повезло, мир мог бы узнать о пенициллине немного раньше».

Но даже если бы Пейн решил опубликовать свои находки в начале 1930-х, был ли тогдашний мир готов к идее «антибиотиков»? По мнению многих историков, нет. Эта концепция вряд ли уложилась бы у людей в голове без предварительной подготовки. В конце концов, разве лекарство может убить бактерии, вызывающие инфекцию, при этом не нанеся вреда собственным клеткам пациента? Медицинский мир был просто не готов к такому повороту. И долго еще не был бы готов, если бы не очередной шаг, совершенный в 1935 г.

Веха № 3

Пронтозил: забытое лекарство вызывает глобальные перемены

К началу 1930-х о пенициллине благополучно забыли. Ученые приступили к поиску новых кандидатов, которые, как они надеялись, можно было бы использовать для победы над инфекциями. Некоторых кандидатов вы скорее ожидали бы увидеть в железных трубах на заводе, чем в кровеносной системе человека. Однако идея лечения болезней синтетическими препаратами подтвердила свою жизнеспособность в 1910 г., когда Пауль Эрлих (чья теория клеточных рецепторов в 1885 г. помогла пролить свет на работу иммунной системы и механизм действия вакцин) использовал свои знания о промышленных красителях в разработке лекарства на основе мышьяка, которое получило название сальварсан. Препарат имел исключительный успех. Это было первое эффективное лекарство от сифилиса, которое вскоре стало самым часто назначаемым средством во всем мире.

Но после изобретения сальварсана до начала 1930-х наступило затишье: ученым не удавалось найти другие препараты, которыми можно было бы лечить инфекции. Отличным примером ужасной идеи может служить попытка использовать меркурохром для лечения стрептококковых инфекций. Сегодня эта антисептическая красноватая жидкость применяется в некоторых странах для наружной обработки ран, но в 1920-х некоторые предполагали, что инфекцию можно вылечить ее внутривенным введением. К счастью, это мнение разделяли не все: в 1927 г. группа исследователей доказала, что улучшение состояния пациентов, получивших инъекцию, происходит не за счет его антибиотических свойств, а вследствие того, что пациент испытывает «основательные конституциональные потрясения» в виде «насильственного опорожнения кишечника и неконтролируемой дрожи».

Настойчивое стремление ученых 1930-х отыскать антибактериальное соединение (промышленное, химическое или любое другое) понятно. В те времена, когда антибиотиков еще не существовало, смертельными могли стать многие инфекции, даже самые простые стрептококковые: ангина, скарлатина, тонзиллит, разнообразные кожные инфекции и родильная горячка. Ужас перед распространением инфекции, которую никак нельзя было остановить, становится вполне понятен, если вспомнить историю Мэри Уолстонкрафт и ее мучительной смерти в 1797 г. вскоре после рождения дочери (см. главу 3). Но хотя работа Игнаца Земмельвейса в 1840-х в итоге помогла уменьшить число случаев родильной горячки, стрептококковые инфекции были по-прежнему широко распространены и опасны, особенно при попадании в кровь.

В этой атмосфере в 1927 г. немецкий ученый Герхард Домагк начал работу в лаборатории группы компаний I. G. Farbenindustrie в поисках промышленных соединений, которые помогли бы побороть стрептококковые инфекции. 20 декабря 1932 г., протестировав множество соединений красителей с другими химическими веществами, Домагк и его коллеги получили подходящее вещество из группы сульфаниламидов. Они провели тест в обычном порядке: ввели группе мышей смертельную дозу стрептококковых бактерий, а через полтора часа дали половине из них новую сульфаниламидную композицию. Но то, что они обнаружили через несколько дней, 24 декабря, было совсем необычным. Все контрольные мыши умерли от стрептококковой инфекции, а мыши, получившие сульфаниламид, были по-прежнему живы.

О чудесном новом лекарстве — его назвали пронтозил — вскоре узнал весь мир. Кроме того, ученые обнаружили, что, в отличие от других лекарственных средств, которые они тестировали ранее, принятый внутрь пронтозил вылечивает не только стрептококковые инфекции, но и гонорею, менингит и некоторые виды стафилококковых инфекций. Вскоре появились другие лекарства на основе сульфаниламида. Ни одно из них не было таким же эффективным, как пронтозил, но в 1939 г. Домагк был награжден за свою работу Нобелевской премией в области физиологии и медицины.

Оглядываясь назад, нельзя не заметить, что в торжественной речи, которую произнес Нобель в честь достижений Домагка, есть странная нестыковка. Действительно, вполне справедливо было прославить ученого за то, что «пронтозил и его производные ежегодно спасают… тысячи человеческих жизней». Но некоторые слова Нобеля были обращены словно к какому-то другому, пока еще не состоявшемуся достижению, особенно когда он заговорил об «открытии, совершившем как минимум революцию в медицине» и о «новой эпохе в лечении инфекционных болезней».

Хотя открытие Домагка скоро затмило повторное открытие пенициллина, пронтозил и сегодня пользуется признанием как препарат, изменивший мышление медицинского сообщества и познакомивший врачей с новой концепцией: лекарства, убивающие бактерии, могут не наносить вреда организму. Фактически именно открытие Домагка позже сподвигло других ученых внимательнее взглянуть на лекарство, от которого они отвернулись десять лет назад. Как однажды заметил сам Александр Флеминг: «Без Домагка не было бы сульфаниламидов, без сульфаниламидов не было бы пенициллина, без пенициллина не было бы антибиотиков».

Веха № 4

От медицинских суден до промышленных баков: долгожданная революция

В середине 1930-х два исследователя из Оксфордского университета начали изучать свойства открытого Флемингом антибактериального вещества — не пенициллина, а лизоцима, натурального фермента, обнаруженного в слезе и других выделяемых телом жидкостях за несколько лет до открытия пенициллина. Этих ученых, немецкого биохимика Эрнста Чейна и австралийского патолога Говарда Флори, впечатлила способность лизоцима растворять стенки клеток бактерий. Правда, к 1939 г. они уже завершили работу над этим исследованием и были готовы перейти к другим. Но прежде чем написать заключение, Чейн решил еще один, последний раз просмотреть научные источники. Тут-то он и наткнулся на малоизвестное исследование Флеминга от 1929 г. То, что Чейн прочел о пенициллине, заинтриговало его: не потому, что он мечтал о волшебном лекарстве-антибиотике, а из-за уникальной способности препарата разрушать клеточные стенки бактерий.

Чейн уговорил Флори обратить более пристальное внимание на пенициллин, хотя это было не так-то просто. Сложно оказалось даже найти пробный образец — через десять лет после того, как Флеминг забросил свои эксперименты. Однако хотя использовать тот же грибок было невозможно, Флори и Чейн без особого труда обнаружили его потомство. По счастливой случайности один из сотрудников школы ранее получил пробный образец грибка от Флеминга и с тех пор продолжал его выращивать. «Я поверить не мог, что мне так повезло, — позже рассказывал Чейн о том, как узнал о существовании этого грибка плесени. — Тут же, в этом же здании, буквально у нас под носом!»

Чейн приступил к изучению грибка, и к началу 1940-х он, благодаря своим познаниям в биохимии, совершил то, что не удалось Флемингу: произвел небольшое количество концентрированного пенициллина. По сравнению с «сырым», работать над которым Флеминг отчаялся и который подавлял бактерии, будучи растворенным в пропорции 1 к 800, концентрированный препарат, полученный Чейном, был в 1000 раз мощнее и мог подавлять бактерии, будучи растворенным в пропорции 1 к 1 млн. И при этом, как ни удивительно, он не был токсичен и не представлял опасности для здоровья.

Чейн и Флори были хорошо осведомлены о недавнем успехе пронтозила, давшего надежду на возможность избавления от инфекций с помощью лекарств, — и поспешили изменить цели своего исследования. Пенициллин теперь был для них не просто абстрактным объектом любопытства в рамках изучения клеточных стенок бактерий. Он стал потенциальным антибиотиком, терапевтическим препаратом, который, вероятно, можно было использовать для лечения инфекционных заболеваний. Воодушевленные новыми задачами, Чейн и Флори запланировали протестировать новый потенциальный пенициллин на животных. 25 мая 1940 г. восемь мышей получили смертельную дозу Streptococcus pyogenes, после чего четыре из них также получили пенициллин. Чейн и Флори были настолько взволнованы, что не ложились спать всю ночь в ожидании результата. К 3:45 утра они его достигли: все не получившие пенициллин мыши погибли, а получившие — выжили.

Но возникла еще одна трудность. Чейну пришлось потратить массу времени и сил на то, чтобы произвести крошечную дозу пенициллина, необходимую для четырех мышей. Как же произвести количество, достаточное для человека? Вскоре научный сотрудник Норман Хитли подошел к решению проблемы творчески, поставив краткосрочную цель: подготовить лекарства для нескольких человек в рамках клинического исследования. Он закупил медицинские судна — сотни суден, — чтобы выращивать в них грибок, и использовал шелк из старых парашютов (подвесив их на библиотечный шкаф), чтобы слить и отфильтровать грибковый «бульон». Чейн химическим способом получал пенициллин, используя разработанные им самим методы. К началу 1941 г. у ученых было достаточно пенициллина для терапии людей. Первым пациентом, на котором был испробован препарат, оказался сорокатрехлетний полицейский, умирающий от септицемии. Введенная ему доза пенициллина оказалась недостаточной, и он скончался. После этого ученые ввели лекарство ребенку, которому требовалась меньшая доза. Ребенок был излечен от инфекции, однако скончался от осложнений основного заболевания. Последующие группы пациентов, получающие пенициллин, демонстрировали чрезвычайно впечатляющие улучшения.

Но к воодушевлению исследователей снова примешивалось осознание, казалось бы, неразрешимой проблемы: как им теперь произвести достаточно пенициллина для более масштабного исследования, включавшего чуть менее тысячи пациентов по всему миру? К тому моменту, то есть к середине 1941 г., новости о первых опытах с пенициллином уже успели распространиться повсюду. Речь шла не просто о каком-то новом антибиотике — пенициллин казался намного перспективнее, чем пронтозил и прочие сульфаниламиды. Как сообщалось в августе 1941 г. в издании The Lancet, у пенициллина было «огромное преимущество» перед пронтозилом. Он не только боролся со множеством разнообразных патогенных бактерий, но и не терял эффективность при воздействии гноя, крови и других микробов, то есть был именно таким, каким должно быть лекарство для обработки инфицированных ран.

Однако перед Флори и Чейном все еще стояла проблема производства больших доз. Ведь они были ограничены возможностями медицинских суден и старых парашютов. К сожалению, на помощь британских фармацевтических компаний рассчитывать было нельзя. Их мощности уже и так были исчерпаны до предела в связи с участием Великобритании во Второй мировой войне. Так что в июне 1941 г. Флори и Хитли отправились в США с целью получить помощь от правительства и бизнесменов Америки. Через полгода, благодаря удаче и связям, Хитли удалось попасть в лабораторию Пеории. Причем это была лаборатория исследований ферментации при кафедре сельского хозяйства, и ее мощность позволяла «варить» более 200 тыс. литров грибкового фильтрата. Конечно, этого количества едва хватало для лечения нескольких тысяч пациентов — нужно было около 100, — но все же это намного лучше, чем 11 литров в час, которые Хитли удавалось производить в Англии.

И снова в истории пенициллина нашлось место счастливым случайностям — на этот раз двум. Сперва исследователи обнаружили, что они смогут увеличить объемы производства пенициллина примерно в десять раз, если дополнят процесс ферментации кукурузным экстрактом — побочным продуктом производства кукурузного крахмала, который в тот момент был доступен только в Пеории. Затем, в результате еще одной счастливой случайности, один из работников обнаружил плесень, которая, как оказалось, росла на сгнивающей дыне и позволяла произвести в 6 раз больше пенициллина, чем плесень Флеминга.

И вот, благодаря волшебному стечению обстоятельств по обе стороны Атлантики, фармацевтические компании США и Британии вскоре производили достаточно пенициллина, чтобы лечить ранения, полученные солдатами в ходе Второй мировой войны, — от простых поверхностных травм до угрожающих жизни ампутаций. Рост производства был необычайным. В марте 1942 г. пенициллина едва хватало для лечения одного пациента; к концу 1942 г. число прошедших лечение достигло 90, к августу 1943-го — 500, а к 1944 г., благодаря технологии культивирования в глубине питательной среды, разработанной биофармацевтической компанией Pfizer, было уже достаточно пенициллина, чтобы лечить всех солдат, получивших ранения в ходе вторжения в Нормандию, а также ограниченное количество рядовых американцев.

Открытие антибиотиков — и революция антибиотиков — наконец стали реальностью. Но кто же был первым пациентом в США, которого спас пенициллин?

Веха № 5

«Черная магия»: первый пациент, спасенный благодаря пенициллину

В марте 1942 г. сорокатрехлетняя Анна Миллер умирала в госпитале Йель-Нью-Хэвен от серьезной стрептококковой инфекции, которая развилась в результате выкидыша. В течение месяца врачи безуспешно пытались вылечить ее с помощью лекарств, операций и переливаний крови. Теперь же, когда состояние Анны начало ухудшаться, она то и дело теряла сознание, а температура 41 градус держалась уже в течение 11 дней, врачи смирились с тем, что жить ей осталось недолго. Именно в этот момент терапевт Анны, доктор Джон Бамстед, предложил идею, которая, по его мнению, могла спасти пациентке жизнь.

Бамстед успел прочесть о новом препарате, предназначенном для лечения бактериальных инфекций. Ему было хорошо известно, что возможности производства пока ограничивались крошечными дозами, но знал он и еще кое-что очень важное: другой терапевт больницы, доктор Джон Фултон, во время учебы в Оксфорде дружил с одним из немногих людей в мире, у которых был доступ к лекарству, — Говардом Флори. Как ни удивительно, сам Фултон в тот момент тоже лежал в больнице — по соседству — и лечился от тяжелой инфекции легких. И вот, решив во что бы то ни стало спасти свою пациентку, Бамстед обратился к захворавшему врачу и попросил его как-нибудь уговорить Флори отправить ему небольшое количество редкого лекарства. Несмотря на свое ослабленное состояние, Фултон согласился и приступил к телефонным переговорам прямо на больничной койке. Настойчивость и терпение оправдали себя: в субботу 14 марта почтальон в сопровождении полиции доставил в больницу небольшую посылку. Внутри оказалась склянка с резко пахнущим коричнево-красным порошком.

Вокруг этой небольшой порции пенициллина собралась группа врачей: они не до конца понимали, что с ним делать. После недолгого обсуждения было решено растворить порошок в соляном растворе и пропустить его через фильтр для стерилизации. Затем получившийся раствор доставили в палату умирающей Анны Миллер и ввели внутривенно первую дозу в 850 единиц, после чего врачи давали ей соответствующие дозы каждые 4 часа. Перед первым введением препарата в субботу температура Миллер снова поднялась до 41°. Однако введение пенициллина мгновенно дало мощный эффект: уже к утру жар резко спал. К понедельнику температура снизилась до 37°, у Анны появился аппетит. Когда врачи пришли взглянуть на нее во время традиционного утреннего обхода, один из старших консультантов, увидев ее график изменения температуры, пробормотал: «Черная магия…»

Лечение Миллер длилось несколько месяцев — до тех пор, пока ее температура не стабилизировалась. После этого случая, буквально вернувшего ее к жизни, Анна прожила еще 57 лет и скончалась в 1999 г. И хотя врачи, вылечившие ее в 1942 г., не могли знать, сколько лет жизни подарит ей это уникальное лекарство, история Анны Миллер все же имела мгновенный эффект. Новости о ее выздоровлении подтолкнули американские фармацевтические компании к заметному увеличению объемов производства пенициллина: с 400 млн единиц в первые 5 месяцев 1943 г. до 20,5 млрд единиц в последующие 7 месяцев, то есть в 500 раз. К 1945 г. производство пенициллина было поставлено на поток — 650 млрд единиц в месяц.

* * *

Хотя фортуна и повлияла на открытие пенициллина — от чашек с грибковыми культурами в Англии до гигантских ферментационных резервуаров в Пеории, — свою роль в изучении антибиотиков сыграл и усердный труд. Так совместные усилия двух организмов — человека и бактерий — вывели медицину в следующую эру, где антибиотики, казалось (и, собственно, так и было), росли прямо из земли.

Веха № 6

Битва в почве: открытие второго антибиотика (а также третьего, четвертого…)

Грязь. Есть ли что-нибудь более простое, дешевое и вездесущее? Мы ее подметаем, отмываем, с презрением отчищаем. Ценность ее столь ничтожна, что она даже стала для нас жалким стандартом, с которым мы сравниваем все дешевое и бесполезное (отсюда выражение «этого добра там как грязи»). Но, как утверждает Зельман Ваксман, грязь вызывала у него изумление начиная с 1915 г., когда он стал ассистентом исследователей бактериологии почвы на экспериментальной сельскохозяйственной станции в Нью-Джерси. В глазах Ваксмана почва была необъятной вселенной, населенной огромным количеством чрезвычайно важных обитателей.

Ваксман интересовался не только той ролью, которую микроскопические бактерии и плесень играют в разложении растительной и животной ткани, превращая ее в органическую массу для роста растений. Скорее его заинтриговала битва, которую микроорганизмы в почве постоянно ведут друг с другом, а также химическое «вооружение», создаваемое ими для участия в бою. О противостоянии микроорганизмов ученые знали годами. Именно поэтому Жан-Поль Вюймен в 1889 г. придумал термин «антибиоз». Но по-настоящему Ваксмана интриговала не постоянная борьба бактерий друг с другом, а то, что предшествующие этому научные находки показали: в почве есть нечто, способное убивать один конкретный вид бактерий — Tubercle bacillus, вызывавший туберкулез.

К 1932 г. Ваксман доказал: что бы это ни было, оно, судя по всему, производилось другими бактериями в ходе их непрерывной борьбы в почве.

И вот в 1939 г., когда другие ученые на противоположном берегу Атлантического океана пристально изучали производящую пенициллин плесень, Ваксман и его коллеги в Университете Рутгерса в Нью-Джерси начали изучать почву и содержащиеся в ней микробы в надежде, что один из них способен произвести вещество, которое будет полезным для лечения туберкулеза и других инфекций. Но в лаборатории Ваксмана не было места счастливым случайностям. Команда Ваксмана начала скурупулезное и систематическое исследование, в рамках которого были изучены около 10 000 различных микроорганизмов, содержащихся в почве, и сконцентрировала свое внимание на большом порядке бактерий, известных как актиномицеты. Усилия исследователей были вскоре вознаграждены открытием двух веществ, обладавших свойствами антибиотиков: актиномицина в 1940 г. и стрептотрицина в 1942 г. Оба вещества оказались слишком токсичными для использования в лечении человека. Однако в 1943 г. Альберт Шатц, студент докторантуры, проходивший стажировку в лаборатории Ваксмана, сорвал джекпот: обнаружил два штамма стрептомицет, производивших вещество, которое могло нейтрализовать бактерии. И не просто какие-нибудь, а микроорганизм, вызывающий туберкулез.

Новый антибиотик назвали стрептомицином, и осенью 1943 г., всего через несколько месяцев после открытия Шатца, Корвин Хиншоу, врач клиники Майо, запросил его образец для проведения тестов на животных. На получение пробы ушло пять месяцев, и имеющегося количества было едва достаточно для лечения четырех морских свинок, но результат стоил потраченного времени. Воздействие стрептомицина при лечении туберкулеза оказалось «заметным и мощным». Теперь Хиншоу была нужна «морская свинка» другого вида.

В июле 1943 г. двадцатилетняя Патриция Томас, поступившая в изолятор Минерал-Спрингз округа Гудхью в штате Миннесота, призналась своему врачу в том, что она часто проводила время с двоюродной сестрой, страдавшей от туберкулеза. Врача такое признание не слишком удивило: у девушки был диагностирован туберкулез на последних стадиях, причем развивалась болезнь стремительно. В следующие 15 месяцев в правом легком пациентки образовалась полость, в левом появилась «зловещая» рана, девушка начала страдать от усиливающегося кашля, по ночам ее бросало в пот, жар и холод. Она даже была прооперирована, но болезнь продолжала распространяться. И вот 20 ноября 1944 г., через год после успешного опыта с грызунами, доктор Хиншоу спросил Томас, не желает ли она побыть подопытным кроликом и стать первым больным туберкулезом, которого будут лечить с помощью стрептомицина. Томас согласилась — и, как оказалось, приняла весьма мудрое решение. За шесть месяцев она пережила стремительное — и даже, по мнению некоторых, невероятное — выздоровление. Лечение было прекращено в мае 1945 г., и последовавший за ним рентгеновский снимок показал явное улучшение состояния здоровья. Спасенная Томас позже вышла замуж и родила троих детей.