Металлическое самолетостроение
Металлическое самолетостроение
Со второй половины XIX века в транспортном машиностроении начался процесс вытеснения дерева металлом. Сначала появились металлические суда, затем металл стали использовать в конструкции корпусов автомобилей, вагонов и других наземных транспортных средств. Преимущества металла заключались в однородности его
физико-механических свойств, удобстве применения машинных методов производства, более продолжительном сроке службы. В отличие от древесины металл не подвержен гниению, его вес не изменяется с увеличением влажности воздуха. Он не горюч, не расщепляется при ударах; металлические детали могут иметь практически любую форму и размер.
Несмотря на все указанные достоинства металла как конструкционного материала, самолеты в начале нашего века делали из дерева и полотна. Правда, в 1910–1912 гг. было несколько попыток построить цельнометаллический летательный аппарат (самолет Рейснера в Германии; моноплан «Тюбавион» французских конструкторов Понша и Примара), но ни один из этих самолетов не поднялся в воздух [14. с. 232]. Сталь, составлявшая основу конструкции этих аппаратов, оказалась слишком тяжелым материалом, и маломощные двигатели тех лет не могли преодолеть силу земного притяжения.
Первые успешные цельнометаллические самолеты появились в Германии в годы первой мировой войны. Это были истребители и штурмовики конструкции Г. Юнкерса с монопланным крылом. К появлению таких машин имелся ряд предпосылок. Во-первых, незадолго до начала войны немецкий ученый А. Вильм создал сплав дюралюмин на основе алюминия, меди, магния и марганца, который превосходил по прочности чистый алюминий в 4–5 раз и был в 3 раза легче, чем сталь. В начале 1910-х годов металлургический завод в Дюрене, Германия, приступил к промышленному выпуску нового сплава (отсюда и происходит его название). Во-вторых, в Германии уже до войны имелся опыт применения металла на летательных аппаратах — дирижаблях Ф. Цеппелина жесткой конструкции. Наконец, в-третьих, недостаток качественной древесины для массового выпуска самолетов во время войны 1914–1918 гг. заставил конструкторов искать замену дереву.
Самолеты Юнкерса поступили в производство в конце войны и не оказали заметного влияния на ход военных действий. Тем не менее их появление знаменовало собой начало скачка в развитии схемы самолетов. Применение металла позволило отказаться от традиционных стоек и расчалок и установить на самолете свободнонесушее крыло. Из-за гофрированности обшивки (это было сделано во избежание потери устойчивости тонкой металлической поверхности при изгибе крыла) и общих грубых форм самолетов они не обладали заметными аэродинамическими преимуществами перед обычными деревянными бипланами, но, в принципе, разработанная Юнкерсом конструкция была очень перспективной.
Появление пассажирской авиации послужило новым стимулом к развитию металлического самолетостроения. «Жизнь» самолетов в годы войны была короткой из-за больших потерь в воздушных боях. Однако самолеты гражданской авиации должны были эксплуатироваться многие годы. Долговечность деревянной конструкции ограничивалась склонностью этою материала к набуханию под действием влаги и к гниению. Еще быстрее выходило из строя полотно, которым обтягивали крыло и фюзеляж: в результате перепадов влажности и температуры оно деформировалось, провисало, теряло прочность, и через 2–3 года самолет требовалось обтягивать заново. Различные лаки и краски лишь отчасти помогали замедлить разрушающее воздействие атмосферы.
Металлический самолет был свободен от указанных недостатков. Правда, имелась другая проблема — коррозия металла, в частности дюралюминия. Однако в результате интенсивных исследований металлургов эту задачу удалось разрешить: в середине 20-х годов в США был разработан надежный способ защиты дюралевых деталей от коррозии путем покрытия их тонким слоем чистого алюминия — так называемое плакирование. Новый устойчивый к коррозии сплав получил название «альклэд» [22, с. 102; 28, с. 273].
Таким образом, долговечность цельнометаллических самолетов оказалась намного больше, чем самолетов деревянной конструкции. Отсутствие необходимости в частых профилактических осмотрах и ремонтах конструкции удешевляло стоимость эксплуатации, что позволяло компенсировать большую в полтора-два раза стоимость изготовления самолета из металла.
Первыми послевоенными металлическими самолетами были пассажирские машины фирмы «Юнкерс». Как уже отмечалось в предыдущим разделе, в 1919 г. появился одномоторный F-13, который и по аэродинамической схеме (свободнонесущий моноплан), и по конструкции коренным образом отличался от других самолетов. На рис. 1.54 показано устройство планера самолета Юнкерса. Крыло было образовано пространственной фермой из 10 дюралевых труб, соединенных раскосами.
Лонжероны, как таковые, отсутствовали. Поверхность была покрыта обшивкой из тонкого гофрированного дюраля. Консоли крыльев соединялись с центропланом с помощью обычных гаек. Фюзеляж также имел ферменную конструкцию из дюралевых элементов, покрытых гофрированной обшивкой. Сборка деталей крыла, оперения и фюзеляжа производилась с помощью заклепок на специальных сгапелях. В целом, конструкция F-13 была, в смысле прочности, целесообразной, но в технологическом отношении довольно сложной.
Развитием F-13 стали одномоторный W-33, трехмоторные G-24, G-31 и, наконец, знаменитый Ju-52/Зт — наиболее распространенный пассажирский самолет в Европе в 30-е годы. По конструкции они были схожи с первенцем пассажирского металлического самолетостроения F-13 и отличались, в основном, размерами и числом двигателей. Создание на основе одного прототипа целых «семейств» летательных аппаратов было очень типично для металлического самолетостроения, т. к. изменение размеров при сохранении основных технологических процессов достигалось в производстве сравнительно легко.
Рис. 1.54. Конструкции планера самолета F-13
Идеи Юнкерса были подхвачены п СССР. Основоположником металлического самолетостроении в нашей стране стал Л. Н. Туполев. Надо сказать, что мысль о перспективности создании самолетов из металла была принята вначале далеко не всеми. Многие считали, что страна, обладающая огромными запасами высококачественной древесины, должна идти по пути деревянного самолетостроения, тем более, что в начале 20-х годов дюралюминий в СССР не производился [29. с. 52 |. Тем не менее Туполеву и его единомышленникам удалось убедить других в том. что будущее — за металлическими самолетами. В августе 1922 г. в СССР была выпущена первая партия отечественного дюралюминии, получившего название «кольчугалюминий», а меньше чем через два года — 26 мая 1924 г. — поднялся в воздух первый советский цельнометаллический самолет АНТ-2 — небольшой одномоторный моноплан со свободнонесущим крылом.
Надо отмстить, что развитию металлического самолетостроения в нашей стране помогло существование концессии Юнкерсом по производству металлических самолетов на заводе в Филях. Немецкие инженеры работали там в 1923–1925 гг., велась сборка двух типов военных самолетов-разведчиков: Ju-20 и Ju-21. Помогавшие им советские специалисты переняли опыт производства металлических самолетов[5]. После расторжения договора с Юнкерсом на филевском авиационном заводе (ныне это завод им. М. В. Хруничева) выпускались первые советские серийные цельнометаллические самолеты И-4, Р-3, ТБ-1, ТБ-3. АНТ-9 [31].
В 1925 г. в конструкторском бюро А. Н. Туполева создали бомбардировщик ТБ-1 (АНТ-4), появление которого оказало влияние на развитие всего самолетостроения. Как и самолеты Юнкерса, это был цельнодюралевый моноплан со свободнонесущим низкорасположенным крылом, ферменной силовой конструкцией и гофрированной обшивкой. Однако и по внешней компоновке, и по внутренней конструкции он существенно отличался от «Юнкерсов». Самолет представлял собой двухмоторный моноплан с двигателями на передней кромке крыла. Крыло имело 5 лонжеронов в виде ферм из соединенных между собой труб, стрингеры, 18 нервюр в центроплане и по 10 в каждой консоли. Если на самолетах Юнкерса конструкция крыла имела вид пространственной фермы с диагональными раскосами, в углах которых проходили трубчатые пояса, то крыло самолетов Туполева характеризовалось более технологичной конструктивно-силовой схемой с плоскими ферменными лонжеронами. Еще одно отличие заключалось в применении Туполевым разработанной им в Центральном аэрогидродинамическом институте обшивки с более крутым гофром (так называемая «волна ЦАГИ»). У потребление такой обшивки вело к некоторому увеличению лобового сопротивления, зато позволяло повысить прочность на 5–7 %, а жесткость — почти на четверть по сравнению с «волной Юнкерса» [32, с. 132].
В момент появления ТБ-1 был самым большим цельнометаллическим самолетом в мире: он имел длину 18 м, размах крыла — 28,7 м, площадь крыла — 120 м. Для уменьшения нагрузки на ручку управления летчик мог изменять в полете угол установки горизонтального стабилизатора. Топливные баки, обеспечивающие самолету дальность 1350 км, находились в центроплане крыла. Внутри фюзеляжа располагались бомбовый отсек, места для летчиков, бомбардира (он же — радист) и стрелков (на самолете имелось три подвижные турели для спаренных пулеметов Льюис). Общая численность экипажа — 5 человек.
ТБ-1 строился в серии в 1929–1932 гг. и находился на вооружении до 1936 г. Он применялся также в гражданской авиации, участвовал в арктических экспедициях. В 1929 г. на серийном ТБ-1 «Страна Советов» со снятым вооружением был выполнен перелет Москва — Петропавловск-на-Камчатке — Сиэтл — Сан-Франциско — Нью-Йорк, общей протяженностью 21242 км, из них 8000 км — над океаном (рис. 1.55). Возглавлял экипаж самолета летчик С.А.Шестаков [21, с. 118–124; 33].
ТБ-1 произвел большое впечатление на американцев, оценивших превосходство новой схемы над деревянными бомбардировщиками-бипланами. «Авиационные специалисты Америки были восхишены прекрасными формами и законченностью конструкции самолета», — писалось в газете «Нью-Йорк Таймс» от 2 ноября 1929 г. [33, с.77]. Созданный в 1932 г. фирмой Боинг двухмоторный бомбардировщик В-9 с толстым монопланным крылом имел заметное сходство с тяжелым самолетом А. Н. Туполева.
Развитием самолета ТБ-1 стал четырехмоторный ТБ-3 (АНТ-6). Самолет совершил первый полет 22 декабря 1930 г. Это был первый в мире четырехмоторный бомбардировшик- моноплан, прототип «летающих крепостей» периода второй мировой войны. По конструкции он был, в основном, аналогичен ТБ-1, но имел значительно большие размеры и вдвое большую площадь крыла. Максимальный вес самолета достигал 22000 кг, он мог брать до 5000 кг бомб. Оборонительное вооружение состояло из носовой, средней и хвостовой пулеметных турелей и двух выдвигаемых в полете подкрыльевых пулеметных башен. Из кабины в фюзеляже через боковые двери можно было попасть внутрь крыла к двигателям и дальше — к подкрыльевым пулеметным башням.
ТБ-3 строился большой серией и в 30-е годы составлял основу советской тяжелой бомбардировочной авиации. Всего советские заводы выпустили 819 самолетов [9, с. 432–433].
ТБ-1 и ТБ-3 — первые серийные многомоторные самолеты-монопланы с двигателями, расположенными вдоль размаха крыла. Эта компоновка была лучше, чем принятая Юнкерсом схема с двумя двигателями на крыльях и одним — в передней части фюзеляжа, т. к. носовой мотор ухудшал обтекаемость фюзеляжа, заслонял обзор вперед, препятствовал установке стрелкового вооружения в передней кабине на военных самолетах. Не удивительно, что примененная А. И. Туполевым схема позднее стала общепринятой при конструировании многомоторных самолетов таких, например, как знаменитые американские «летающие крепости» Боинг В-17 и Боинг В-29.[6]
Рис. 1.55. Самолет ТБ-1 «Страна Советов» в Нью-Йорке
Цельнометаллические самолеты-монопланы строили в 20-е годы и в других странах, в частности, во Франции, обладавшей большими запасами ископаемых, необходимых для производства дюраля. Так, французские фирмы Вибои Кодрон выпустили целое семейство металлических истребителей с толстым свободнонесущим крылом и гофрированной обшивкой. Упоминавшиеся выше американские пассажирские самолеты Стаут «Пульман» и Форд «Тримотор» также имели цельнодюралевую конструкцию с гофрированной обшивкой.[7] Однако, в целом, в этих странах в пекл с военное десятилетие преобладали обычные деревянные самолеты. Из-за распрост раненной там системы субсидий мало что понимающие в авиации государственные советники нередко диктовали свои решения, а авиафирмы были больше заинтересованы в поисках путей получения субсидий, чем в улучшении конструкции самолета. В 1922 г. только 2 из 45 появившихся в этом году в мире новых самолетов имели металлическую конструкцию (4,4 %›, в 1924 г. — 14 из 111 (12,6 %), в 1926 г. — 28 из 122 (39,9 %), в 1928 г., — 17 из 52 (32,7 %) [4, с. 210].
Решительный переход к цельнометаллическим конструкциям произошел только в 30-е годы. Существенной предпосылкой к этому явились результаты расследования катастрофы пассажирского трехмоторного самолета фирмы Фоккер, которая произошла в США 31 марта 1931 г. (Ажиотаж вокруг этого события во многом связан с тем, что среди погибших был любимец американской публики — знаменитый футболист Кнут Рокке). Как выяснилось, деревянный каркас крыла подгнил и сломался в полете [23, с. 22]. После этого доверие к деревянным самолетам было в значительной мере утрачено. В 1931 г. доля металлических самолетов в общем числе вновь созданных самолетов составляла уже 62 % [4, с. 210].
Основным недостатком металлических самолетов был большой вес конструкции. Один квадратный метр площади дюралюминиевого крыла пассажирского четырехмоторного моноплана весил 16 кг, а квадратный метр крыла такого же самолета из дерева и фанеры весил на 3 кг меньше. Металлический 32-местный фюзеляж имел вес 1560 кг, тогда как такой же фюзеляж из стальных труб с полотняной обтяжкой весил 1239 кг [4. с. 20–21]. В период, когда мощность авиадвигателей составляла 400–600 л.с., разница в весе в несколько сотен килограммов заметно сказывалась на грузоподъемности и летных характеристиках. Стремясь минимизировать весовые издержки, конструкторы металлических самолетов старались применять наиболее рациональную конструктивно-силовую схему, даже в ущерб обтекаемости машины. Для того, чтобы увеличить строительную высоту лонжеронов, крыло делалось с большой относительной толщиной — 18–20 %. Гофрированная обшивка могла воспринимать нагрузку на кручение даже при очень небольшой толщине дюралевого листа (0,3 мм). Это позволяло более редко располагать нервюры в крыле и стрингеры в фюзеляже. И все же такого весового совершенства, как у самолетов из традиционных материалов, достичь не удавалось — относительный вес металлической конструкции оставался на 5-10 % выше. Причина в том, что удельная прочность основного конструкционного материала деревянных самолетов — сосны — при работе на изгиб в 2 раза больше, чем у дюралюминия и в 3–5 раз больше, чем у стали [35, с. 80].
Гофр обшивки располагали «по потоку», чтобы не увеличивать лобовое сопротивление. Однако полностью избежать аэродинамических потерь не удавалось — сопротивление трения гофрированной металлической поверхности было заметно больше, чем у крыла аналогичной площади с гладкой полотняной или фанерной поверхностью.
В 1920 г. бывший сотрудник Ф. Цеппелина Адольф Рорбах применил при создании четырехмоторного пассажирского самолета Цеппелин-Штаакен Е.4/20 гладкую металлическую обшивку, которая благодаря большой толщине листа могла воспринимать нагрузки не только от кручения, но и от изгиба крыла. Она получила название «работающая обшивка». Данная идея была заимствована из опыта судостроения, с заменой стали на более легкий дюраль.
В начале 20-х годов Е.4/20 (рис. 1.56) был самым большим самолетом-монопланом. Крыло, снабженное небольшими подкосами, имело размах 42,2 м; взлетный вес машины составлял 8600 кг. На передней кромке крыла располагались 4 двигателя «Майбах» мощностью 245 л.с. каждый. Пассажирский отсек вмещал 18 человек.
Теоретически работающая обшивка должна была обеспечить снижение веса, т. к. она, наравне с внутренней силовой конструкцией, участвовала в восприятии действующих на самолет нагрузок, что позволяло уменьшить сечения силовых элементов последней. Кроме того, замена гофрированной поверхности гладкой снижала аэродинамическое сопротивление самолета. Однако в 20-е годы эта идея не привилась. Из-за отсутствия правильных методов прочностного расчета авиационной оболочечной конструкции типа крыла или фюзеляжа с работающей обшивкой толщину обшивки определили из условия предотвращения местной потери устойчивости. В результате самолет Рорбаха оказался перетяжеленным и не обладал нужной дальностью и грузоподъемностью. Правда, по скоростным качествам (крейсерская скорость — около 200 км/ч) он превосходил другие пассажирские самолеты начала 20-х годов, но скорость полета невоенной машины тогда мало кого интересовала.
Рис. 1.56. Самолет Цепеллин-Штаакен Е.4/20
Судьба прогрессивною по конструкции самолета Рорбаха печальна: по характеристикам он выходил за рамки ограничений, установленных для немецкой авиации Версальским договором и поэтому, по указанию властей, в 1922 г. был уничтожен [24, с. 381].
Позднее Рорбах применял крыло с работающей обшивкой в конструкции своих «летающих лодок».
Не только А. Рорбах пытался найти лучшую замену разработанной Юнкерсом конструкции. В 1920 г. О. Шорт демонстрировал на авиационной выставке в Лондоне одномоторный цельнометаллический биплан с работающей дюралевой обшивкой. Во Франции созданием монококовых (веретенообразных, с работающей поверхностью) фюзеляжей из металла занимался инженер Вибо |36, с. 60; 37, с. 58 |. Но в условиях застоя в развитии авиации, обусловленного огромными запасами продукции периода мировой войны, эти работы не привлекли внимания. Самолеты с фюзеляжем-монококом строились, однако материалом для обшивки, так же как в годы первой мировой войны, служила фанера. Потребовалось около десятилетия, прежде чем авиационные металлические конструкции с гладкой работающей обшивкой доказали свои преимущества и получили распространение.
Своеобразным был подход к применению металла в самолетостроении Англии. Принимая во внимание скудные запасы древесины в своей стране, в 1924 г. правительство издало указ не принимать на вооружение деревянные самолеты [38, с. 23]. Не имея собственного алюминия, англичане ориентировались не на дюралюминиевые самолеты, а на конструкции из стали. Идея моноплана с толстым свободнонесушим крылом была отвергнута и в Англии продал жал и делать расчалочные бипланы, только вместо дерева в силовых элементах крыла и фюзеляжа применяли легированную сталь. Так появились классические для послевоенного периода английские самолеты со стальным каркасом и тканевой обшивкой.
Указанная паллиативная мера не привела к улучшению характеристик самолетов. Более того, некоторые английские металлические бипланы середины 20-х годов из-за большего веса конструкции имели практически тс же летные характеристики, как и деревянные английские самолеты образца 1918 г. С конструктивной точки зрения металл в авиастроении оказался выгоден только тогда, когда с его помощью можно было отказаться от старых аэродинамических схем и перейти к новым, более совершенным, как это сделали Юнкерс и Туполев.
На рис. 1.57 показано соотношение числа типов самолетов в 1919–1931 гг. в зависимости от их назначения и материала конструкции. Наиболее часто металл применялся при создании тяжелых самолетов. Это объясняется несколькими причинами. Во-первых, чем самолет больше, тем он дороже и, следовательно, тем важнее обеспечить долговечность его конструкции. Во-вторых, с увеличением размеров самолетов все труднее было найти подходящие деревянные заготовки для конструкции, тогда как для металлических самолетов этой проблемы не существовало. И, наконец, по мере увеличения размеров металлических самолетов-монопланов высота характерного для них крыла толстого профиля становилась достаточной для размещения внутри крупных агрегатов, топливных баков, грузов и даже людей.
В таблице 1.6 приведены некоторые характеристики самых больших металлических самолетов-монопланов конца 20-х и первой половины 30-х годов. Первенцем семейства гигантов был четырехмоторный Юнкерс G-38 (рис. 1.58). Высота центроплана крыла этого самолета была от 2 м у корня до 1,5 м в месте стыка с отъемной частью крыла. Столь большие размеры позволяли расположить внутри крыла двигатели и две пассажирских кабины на 3-х человек каждая. Передняя кромка крыла была застеклена, и пассажиры могли наслаждаться прекрасным видом во время полета. Всего самолет брал на борт 34 пассажира и 7 членов экипажа, на самолете имелась кухня, курительная комната, туалет, умывальная, помещение для грузов.
Рис. 1.57. Относительное число металлических самолетов. (И — истребитель, Б — бомбардировщик, 11 — пассажирский; с-смешанная конструкция, д — дерево, м — металл)
Таблица 1.6. Характеристики цельнометаллических самолетов-гигантов, 1929–1934 гг.
В конструкции G-38 было немало новшеств. Крыло имело необычно большое сужение. Это было сделано для того, чтобы увеличить его ширину (а, следовательно, и высоту) вблизи фюзеляжа и получить пространство, необходимое для размещения в центроплане пассажиров. Из-за сравнительно короткого фюзеляжа плечо действия хвостовых рулей было невелико и пришлось установить бипланное оперение коробчатого типа с тремя вертикальными стабилизаторами. Впервые в самолетостроении Юнкерс применил шасси с колесами, расположенными одно за другим на качающейся в вертикальной плоскости тележке. Такая конструкция, обеспечивающая касание земли при посадке всеми колесами сразу, нашла в наши дни большое распространение.
Рис. 1.58. Юнкерс G-38
В случае остановки какого-либо двигателя, его можно было отремонтировать в полете. Благодаря большой высоте крыла механик мог подойти к любому мотору, с помощью специального приспособления отсоединить пропеллер от двигателя и по направляющим отодвинуть мотор вглубь крыла для осмотра и ремонта [18, с. 53].
6 ноября 1929 г. шеф-пилот фирмы Юнкерс Циммерманн впервые поднял самолет в воздух. В 1930 г. состоялся ряд демонстрационных полетов, в том числе круговой перелет по городам 12 европейских стран, ас 1931 г. G-38 передали в «Люфтганзу» для работы на линии Амстердам — Лондон.
Несмотря на всеобщий интерес во время публичных показов, коммерческого успеха G-38 не имел. Его пассажировместимость и скорость были слишком малы, чтобы оправдать огромную стоимость машины — полтора миллиона марок. Кроме того, в 30-е годы существовало ограниченное число аэродромов, способных принимать гигантский самолет. Всего построили два G-38. Первый потерпел аварию в 1936 г. из-за неисправности в системе управления. Второй G-38, построенный в 1932 г., летал сначала на авиалиниях «Люфтганзы», а с 1939 г. использовался в качестве военно-транспортного самолета. Он был уничтожен на аэродроме во время бомбардировки г мае 1941 г. [17,с. 125–129].
Советский 5-моторный пассажирский АНТ-14 (рис. 1.59). построенный летом 1931 г., лишь немногим уступал по размерам и грузоподъемности G-38. Эта машина с двигателями Гном-Рон «Юпитер-VI» мощностью по 480 л.с. проектировалась А. Н. Туполевым как развитие трехмоторного АНТ-9 и была, в целом, аналогична ему по схеме. В пассажирской кабине имелись места для 36 человек — по четыре в ряду. Экипаж состоял из двух пилотов, штурмана и двух бортмехаников, причем бортмеханики сидели в специальном отсеке в центроплане крыла, откуда могли визуально следить за работой двигателей. Единственный построенный АНТ-9 про явил себя как весьма надежная машина: до начала войны с Германией на нем было совершено около 1000 полетов, причем без единой аварии [20, с. 437]
В 1933 г. в СССР появился самолет, превосходивший по размерам и весу G-38 — шестимоторный АНТ-16 (ТБ-4). Он был создан как логическое продолжение линии тяжелых цельнометаллических самолетов А. Н. Туполева — двухмоторного ТБ-1 и четырехмоторного ТБ-3. ТБ-4 имел шесть двигателей: четыре в крыле, как на ТБ-3. и два — в мотогондоле над фюзеляжем. По величине крыла и взлетному весу он почти вдвое превосходил ТБ-3. П. М. Стефановский, которому довелось испытывать этот самолет, вспоминал: «Он просто потрясал! Человек среднего роста свободно расхаживал не только в фюзеляже, но не пригибался и в центральной части крыла.
Рис. 1.59. Самолет АНТ-1 4 „Правда“
Оборудование чудовищной машины напоминало настоящий промышленный комбинат. Имелась даже самая настоящая малогабаритная электростанция для автономного энергопитания всех самолетных агрегатов. Компрессоры, нагнетающие сжатый воздух для запуска моторов, располагались на борту корабля. Комплект объемистых цистерн-баков вмешал десятки тонн горючего и смазочных материалов. Различное оборудование, вооружение, системы и аппараты управления заполнили всю внутренность самолета диковинных размеров» [38, с. 42].
Еще большими размерами отличался восьмимоторный «Максим Горький» (АНТ-20). Это был самый большой самолет с колесным шасси из всех, созданных до конца второй мировой войны. Он был построен на общественные пожертвования (собрано 6 млн. рублей) в ОКБ А. Н. Туполева как пассажирский и агитационный самолет. Его создание должно было служить доказательством технической мощи советского государства.
Ниже приводятся выдержки из статьи А. Н. Туполева «Рождение гиганта» в газете «Правда» (21. 06. 1934 г.) с описанием этого самолета: «Максим Горький» представляет собой цельнометаллический моноплан со свободнонесущим крылом, является самым большим в мире сухопутным самолетом и построен целиком из советских материалов с мощными советскими моторами.
«…На „Максиме Горьком“ мы впервые для тяжелых самолетов применили крыло с большим удлинением, улучшающим его аэродинамические качества. Крыло „Максима Горького“ имеет такие размеры по высоте и длине дужки [профиля — Д.С.], которые позволили поместить внутри крыла служебные помещения и каюты. Размах крыла „Максима Горькою“ — 63 метра. Длина фюзеляжа — 32,5 метра. Высота самолета в положении стоянки равна 10,6 метра.
…В пассажирском варианте самолет рассчитан на 76 человек пассажиров и экипажа.
Все оборудование „Максима Горького“ подчинено его основному назначению агитационного самолета.
Внутренняя связь на „Максиме Горьком“ осуществляется автоматической телефонной станцией на 16 номеров.
Кроме внутренней телефонной связи „Максим Горький“ оборудуется пневматической почтой, связывающей командира самолета с радистом и редакцией.
В крыле „Максима Горького“ предусмотрено помещение специальной фотолаборатории для изготовления заснятых в полете фотоснимков.
Рис. 1.60. В салоне самолета „Максим Горький“
Центральной частью кинооборудования самолета является кинопроектор „Вомит“. При помощи его можно демонстрировать на походном экране, установленном во время стоянки близ самолета, звуковые кинокартины.
На „Максиме Горьком“ имеется особое помещение для типографии.
„Максим Горький“ имеет свою центральную электрическую станцию. Эта ЦЭС…вырабатывает постоянный и переменный ток. Впервые в истории авиации применяется на самолете переменный ток в 120 вольт. До сих пор все самолеты в мире питались постоянным током максимальным напряжением в 24 вольта.
…Бытовое оборудование на „Максиме Горьком“ обеспечивает полный комфорт пассажирам и экипажу. Удобные кресла, ковры, занавески, столики, настольные электролампы и многое другое — все говорит о предоставлении для пассажиров всяческих удобств. К бытовому оборудованию „Максима Горького“ относятся также спальные каюты, электрифицированный буфет с горячими и холодными закусками склад для провизии, багажное помещение, умывальники, уборные, аптечка.
Большое внимание уделяли мы оборудованию, необходимому для управления самолетом-гигантом. Пилотный отсек оборудован всеми необходимыми приборами как для нормального самолетовождения, так и для слепого полета. На „Максиме Горьком“ устанавливается управляющий механизм автопилота — прибора для автоматического движения самолета. Электрическое управление стабилизатором дублировано ручным посредством тросов. На рулях высоты и направления установлены специальные компенсирующие серворули, сильно облегчающие работу летчика.
К моторам вовремя полета механикам обеспечен свободный доступ» [32,с. 190–193].
К этому можно добавить, что общая площадь «жилых помещений» самолета составляла более 100 м?.
Кроме агитационного и пассажирского предусматривался также военный вариант «Максима Горького». В качестве бомбардировщика самолет должен был нести 10 тонн бомб, иметь мощное оборонительное вооружение ‹2 пушки и 6 пулеметов) [9, с. 317].
«Максим Горький» просуществовал менее года. Первый полет самолета состоялся 17 июня 1934 г. (летчики М. М. Громов и Н. С. Журов), а 18 мая 1935 г. во время полета над Центральным аэродромом в Москве произошла нелепая катастрофа Летчик-испытатель ЦАГИ Н. П. Благин, эскортирующий «Максим Горький» на истребителе И-5, самовольно начал выполнять вблизи многомоторной машины фигуры высшего пилотажа и при попытке сделать вокруг нее мертвую петлю не рассчитал скорость и врезался в крыло. По свидетельству очевидцев, истребитель Благина врезался в средний мотор правого крыла, тот отвалился, а И-5 застрял в образовавшемся проеме крыла. Вслед за этим хвостовая часть истребителя оторвалась и нанесла еще один удар по «Максиму Горькому», повредив его органы управления. Воздушный гигант перевернулся и, падая, стал разваливаться в воздухе [21, с. 156]. Погибли все находившиеся на борту — 33 пассажира и 12 членов экипажа. Погиб и виновник катастрофы — Благин.
После гибели «Максима Горького» правительство приняло решение о постройке самолета-дублера и еше 15 таких машин. Однако на практике ограничились постройкой только одного самолета — ПС-124 (АНТ-20бис) с шестью моторами увеличенной мощности (рис. 1.61). Он эксплуатировался в 1940–1941 гг. на линии Москва — Минеральные Воды, перевозя за один рейс 64 пассажира. Во время войны использовался для перевозки грузов и разбился при посадке в конце 1942 г.
Рис 1.61. Самолет АНТ 20 бис
Еще один советский «воздушный гигант» — семимоторный К-7 — был построен в 1933 г. на Украине под руководством К. А. Калинина. Испытания 38-тонной машины также закончились катастрофой. Подробнее об этом самолете необычной аэродинамической схемы будет рассказано ниже.
Среди основных технических проблем, возникавших при создании самолетов необычно больших размеров, следует выделить две: конструирование шасси, способного выдерживать нагрузки при взлете и посадке сверхтяжелого самолета и способы снижения нагрузок на штурвал летчика.
Выше мною уже отмечены особенности, примененные Юнкерсом в конструкции шасси G-38. На ТБ-4 впервые в СССР пластинчатая резиновая амортизация шасси была заменена воздушно-масляными амортизаторами, способными более эффективно поглощать нагрузки. Необычный способ выбрал К. А. Калинин. Его К-7 вообще не имел амортизации: вместо амортизаторов применялись специальные колеса низкого давления и очень больших размеров, способные воспринимать значительную энергию при ударе (рис. 1.62). Такие колеса разработала в США в 20-е годы фирма Гудъер.
В связи с тем, что площадь поверхностей управления самолетов-гигантов была очень велика, обычных способов для снижения усилий на штурвале (переставной в полете стабилизатор или аэродинамическая компенсация рулей) было уже недостаточно. Поэтому на некоторых из них применялись так называемые серворули — небольшие поверхности, вынесенные на балочках за контуры рулей и элеронов. При повороте серворуль изменял шарнирный момент основного руля и, тем самым, вызывал его отклонение. Управление серворулем осуществлялось обычно посредством электропривода. Забегая вперед, отмечу, что этот метод не получил распространения из-за запаздывания действия и опасности возникновения вибраций рулевых поверхностей и был вытеснен бустерной системой управления.
Самолеты-гиганты, построенные в единичных образцах, вскоре ушли со сцены. Несмотря на увеличение чиста двигателей, размеров и веса, их скорость и весовая отдача оставались неизменными. Более того, относительный вес полезной нагрузки у них был даже ниже, чем у обычных самолетов того времени. Причина этого заключалась в консервативности их конструкции: почти не менялись такие важные характеристики, как нагрузка на крыло (m/S), энерговооруженность (N/m). Таким образом, технического совершенствования летательного аппарата, по существу, не происходило. Не удивительно, что интерес конструкторов к тихоходным металлическим гигантам был непродолжительным — вскоре их вытеснило новое поколение скоростных монопланов.
Внедрение металла в самолетостроение происходило в условиях острой борьбы со сторонниками развития деревянных самолетов. Надо сказать, что у последних были довольно веские доводы. Из табл. 1.7 следует, что первые металлические монопланы в отношении аэродинамики и веса уступали самолетам деревянной или смешанной конструкции: крыло толстого профиля и гофрированная обшивка являлись источниками большого сопротивления, которое не могло компенсировать применение свободнонесущей схемы, а о весовых издержках металлической конструкции уже говорилось. Не следует также забывать, что все крупнейшие производители самолетов периода первой мировой войны основывались на технологии деревянного самолетостроения и переход к металлическим машинам означал бы для них необходимость перестройки всего производства. В таких условиях только наиболее дальновидные и целеустремленные авиаконструкторы, такие как Юнкерс или Туполев, сумели отстоять свои взгляды и проложить путь к будущему в авиации. Создание цельнометаллических самолетов было необходимым условием качественного скачка в развитии самолетов, происшедшего в первой половине 30-х годов.
Рис. 1.62. Колесо самолета К-7 (на переднем плане-колесо К-5)
Таблица 1.7. Сравнение аэродинамического и весового совершенства одномоторных пассажирских самолетов различной конструкции
* Пассажирский вариант разведчика Р-5