От алхимии к научной химии

От алхимии к научной химии

Нельзя провести четкой границы между временем, когда алхимия превратилась в научную химию. Всякая отрасль прикладного знания делается наукой, опираясь, с одной стороны, на эксперимент, а с другой – на теоретические положения, подтвержденные опытными данными. Назовем несколько имен, оставивших яркий след в переходный период развития химии.

Деятельность английских естествоиспытателей Роберта Бойля (1627...1719) и Исаака Ньютона (1649...1727) заложила фундамент научной химии, хотя оба ученых разделяли еще воззрения алхимиков на возможность получения золота из неблагородных металлов.

Бойль родился в Ирландии в аристократической семье и получил разностороннее образование: изучал естествознание, медицину, древние языки, интересовался историей религии. В 1661 г. Бойль выпускает книгу на английском языке, которую он не подписывает своим именем, а издает под названием «Химик-скептик». Отныне исчезает даже термин «алхимик», и с новым названием появляется и новое содержание, Бойль вносит коренные изменения в представление о простых началах древних. Простое тело (элемент) постулируется материальным веществом, не разлагающимся при химическом анализе: «Я понимаю под элементами некоторые первоначальные или простые, вполне несмешанные тела, которые не состоят из каких-либо других тел или друг из друга, а являются теми составными частями, из которых непосредственно сложены все вполне смешанные (т.е. сложные) тела и на которые сложные в конце концов распадаются».

В задачу химии отныне входит открытие новых простых тел и установление их числа. В сочинении «Математические начала философии природы» Ньютон пишет, что «количество вещества (масса) есть мера вещества, устанавливаемая пропорционально плотности и объему его. Это же количество в дальнейшем подразумеваю и под словом «тело» (или масса)».

Важнейшими событиями научной жизни середины XVII – начала XVIII в. явились организации научных обществ. В известной степени такими содружествами были университеты, существовавшие в Западной Европе еще с XII в., где на первых порах изучались богословие, юридическое право и медицина, но схоластический дух и преклонение перед авторитетами в течение ряда столетий сдерживали изучение точных наук. В 1649 г. по инициативе Бойля и его друзей в Лондоне было основано Королевское научное общество на уровне Английской академии наук. В уставе общества было сказано, что оно не будет признавать никаких гипотез, систем, учений натуральной философии, предложенных или признаваемых древними или современными философами, но будет испытывать и обсуждать все мнения, ни одного из них не принимая до тех пор, пока после зрелого обсуждения и иных доказательств, даваемых правильно поставленными опытами, не будет без сомнения доказана истинность каждого положения. Академии наук возникли в Париже (1666), Берлине (1700), Вене (1700), Петербурге (1725), Стокгольме (1739). Труды сочленов новых академий, отдельных научных обществ и появление научных журналов облегчали знакомство с достижениями и открытиями ученых и способствовали обмену мнениями.

Одним из основных вопросов химии от зарождения алхимии и до новых времен был вопрос о том, в чем состоит процесс горения, что происходит с металлами при их обжиге. Химия не знала общих законов, и процессу горения были посвящены труды многих ученых XVIII в.

Георг Эрнст Шталь (1659...1734) вошел в историю химии как автор новой теории горения. Шталь изучал в Иенском университете медицину и химию, занимался историей медицины и преподавал сперва медицину, а затем химию как самостоятельную науку. Он хорошо знал мануфактурное производство тканей, занимался много металлургией, задачей химии считал практические вопросы, способствующие развитию промышленности. Процесс плавки металлов Шталь представлял себе следующим образом. Основную роль играет древесный уголь, передающий горючее начало от руды к металлу. Это начало, которым богат уголь, Шталь назвал флогистоном. При этом уголь превращается в золу, бедную флогистоном, а металл, напротив, им обогащается. Воздух принимает косвенное участие в процессе горения, служа только как бы переносчиком флогистона. Теория флогистона на первых порах не имела успеха, но вскоре была принята почти всеми химиками, в частности теми, кто начал работать с газами, до этих пор не привлекавшими к себе внимания исследователей.

Джозеф Пристли (1733...1804), сын бедного английского суконщика, изучал поначалу теологию, философию, естествознание, древние языки и читал проповеди в протестантской общине. Когда его обвинили в свободомыслии, так как он не принадлежал к англиканской церкви, ему пришлось зарабатывать на жизнь преподаванием языков. В тридцатилетнем возрасте он прослушал курс химии в Уоррингтонском университете и под впечатлением новых для него идей начал заниматься естествознанием, физическими и химическими экспериментами. Он сделал целый ряд открытий: выделил и изучил семь газообразных веществ: закись азота, хлористый водород, аммиак, фтористый кремний, окись углерода, кислород. Об открытии кислорода Пристли сообщил Лавуазье лично, поехав для этого в Париж. Несмотря на признание научных успехов на родине и за ее рубежом, бедствия снова обрушились на ученого за его передовые взгляды, ибо он был ярым сторонником Великой Французской революции 1789 г. Толпа, натравленная реакционными кругами, подожгла и разграбила его дом и лабораторию. Несмотря на поддержку французских ученых, через некоторое время он покинул Англию и обосновался в Северной Америке, где у него были старые связи с Бенжаменом Франклином, по предложению которого он еще в 1767 г. написал «Историю учения об электричестве».

Генри Кавендиш (1731...1810), второй сын герцога Девонширского, обучался естественным наукам в Кембриджском университете. В сорок лет он унаследовал крупное состояние, и все свои доходы тратил на организацию лаборатории и создание библиотеки. Лаборатория была оборудована лучшими приборами, а библиотекой мог пользоваться любой желающий. Кавендиш интересовался исследованиями атмосферы и физикой газов. В химии, подобно Ломоносову, он придавал большое значение количественным закономерностям: «Все определяется мерой, числом и весом». Открытый им водород Кавендиш принял за неуловимый флогистон. Будучи большим чудаком, он не любил публиковать свои работы, но, к счастью, исследования, посвященные химии газов, были обнародованы.

Михаил Васильевич Ломоносов (1711...1765) родился в деревне близ Архангельска в семье богатого помора. Образование он получил сначала в Славяно-греко-латинской академии, изучая латинский язык и античную литературу, затем был переведен в Петербургский академический университет, а в 1736 г. был откомандирован для пополнения образования в Германию в Магдебургский университет для занятий химией. В Саксонии, в центре немецкой горнодобывающей промышленности, Ломоносов познакомился с постановкой горного дела. В 1741 г. он возвращается на родину и проявляет себя как ученый-энциклопедист. «Ломоносов был великий человек. Между Петром I и Екатериной II он один является самобытным сподвижником просвещения. Он создал первый университет. Он, лучше сказать, был первым нашим университетом». (Пушкин).

«Изучение химии, – пишет Ломоносов, – имеет двоякую цель: одна – усовершенствование естественных наук, другая – умножение жизненных благ. Последняя цель... особенно же в настоящем и предыдущих веках достигла хороших успехов, первая же... почти что не обогатила философского познания природы». Одним из первых Ломоносов сделал весы своим главным орудием исследования, в результате чего мог постулировать, что «общий вес вещества остается в одной мере», иными словами, им был установлен закон сохранения вещества. Он почти за 20 лет до Лавуазье предположил, что при горении вещества соединяются с частью воздуха, и хотя не отказался от теории флогистона полностью, но считал флогистон материальным началом.

Антуан Лоран Лавуазье родился в Париже в 1743 г. Подобно тому как это было и с его современниками, в сферу его интересов входили естественноисторические науки: физика, химия, геология. За выполненную по конкурсу работу «Найти наилучший способ освещения улиц больших городов» был награжден золотой медалью Парижской академии наук, сперва был избран адъюнктом Академии, а затем ее действительным членом. Как бывший откупщик (налоговая система старого режима), по решению революционного трибунала был осужден и казнен в 1794 г.

Лавуазье совершил переворот в химии XVIII в., создав наконец правильную теорию процесса горения. Его успех был подготовлен работами Шееле и Пристли, а также тем, что, подобно Ломоносову, он признавал только количественную постановку опытов. Отныне было покончено с теорией флогистона, и стало ясно, что явление обжигания металлов это процесс их соединений с кислородом. Эта фундаментальная теория позволила Лавуазье совместно с его французскими коллегами разработать рациональную номенклатуру всех известных к тому времени элементов (простых тел – согласно Бойлю) и соединений. В 1789 г. был опубликован «Элементарный курс химии» – первый учебник в современном понимании.

Карл Вильгельм Шееле (1742...1787) не получил образования и еще мальчиком был отдан помощником в аптеку, где он постепенно приобрел практический лабораторный опыт. Большие знания в химии были накоплены им в результате настойчивого самообразования. Вопреки неблагоприятным условиям, Шееле сопутствовала удача первооткрывателя: он выделил кислород (не отказавшись от теории флогистона), хлор, марганец, барий, молибден, вольфрам и ряд органических кислот. До Шееле была известна только уксусная кислота, он же выделил из природных продуктов винную, молочную, яблочную и ряд других. Несмотря на отсутствие высшего образования, Шееле был избран действительным членом Шведской академии наук, что было совершенно беспрецедентно в истории химии. Здоровье Шееле было подорвано напряженной работой в неприспособленных условиях с ядовитыми соединениями, и он умер на 44-м году жизни. Существуют также непроверенные данные, что, выделяя безводную синильную кислоту, он по привычке старых химиков попробовал ее на вкус.

Химия делает большие успехи работами блестящих ученых: постепенно подтверждается не только правомерность существования атомов, но и не вызывает более сомнения, что они характеризуются определенной массой, начинают прививаться химические обозначения атомов и делается попытка химические реакции изображать в виде уравнения. И только в начале XIX столетия возникает попытка водораздела между неорганическими и органическими веществами. Еще Лавуазье в своем учебнике делил все вещества на минеральные, животные и растительные. Более четкая классификация была внесена Берцелиусом. Шведский химик Иенс Якоб Берцелиус (1779...1848) предложил из известных к тому времени соединений выделить группу веществ, типичных для живой природы, и назвать их органическими веществами, считая, что только особая «жизненная сила» (vis vitalis, отсюда витализм), присущая растениям и животным, в отличие от мертвой природы способствует их образованию. Берцелиус прославился как своими достижениями в развитии общих вопросов химии, так и блестящей плеядой своих учеников.

Фридрих Вёлер (1800...1882) еще в юности занимался естественными науками и изучал медицину, хот» его и интересовала химия. В Германии, где он родился, он не мог получить соответствующего образования, так как химия преподавалась только как отрасль прикладной медицины. Поэтому он завершил свое образование в Швеции у Берцелиуса. Среди прочих работ Вёлеру удалось, в известной мере случайно, получить из цианистого аммония мочевину. Это рассматривалось как первый синтез органического соединения из неорганического, так как цианистый аммоний безусловно считался неорганическим веществом, поскольку биологическая роль аммония не была тогда известна.

Выделение органической химии в современном понимании было сделано Августом Кекуле фон Страдониц, определившим ее как химию соединений углерода. Кекуле родился в 1829 г. и по желанию родителей должен был заниматься архитектурой, но, прослушав курс лекций Либиха по химии, он меняет свои планы и начинает учиться химии у Либиха. Юстус фон Либих (1803...1873) родился в семье торговца москательными товарами. Его отец в маленькой мастерской занимался изготовлением красок. Эта мастерская и была первой химической лабораторией молодого человека. Либих начал обучаться химии а германских университетах, а затем закончил образование в Париже, где в ту пору химия достигла наивысших успехов. Уже в 21 год он был назначен экстраординарным профессором в маленький немецкий провинциальный Гиссенский университет, где проработал практически всю жизнь. Гиссенский университет стал центром притяжения для многих поколений химиков, слушателей и учеников этого талантливейшего педагога. Основным достижением Либиха в области органической химии является разработанный им метод анализа органических веществ способом их сожжения, метод, не потерявший своего значения до сегодняшнего дня. Помимо теоретических работ Либих посвятил большую часть своих исследований проблемам прикладной химии, в частности заложил научные основы развития агрохимии.

Марселин Бертло (1827...1907), подобно большинству химиков, сначала изучал медицину и только потом переключился на занятия химией. Работы Бертло в области синтеза органических соединений составляют целую эпоху в развитии химической науки. Были синтезированы органические кислоты (уксусная и муравьиная) и этиловый алкоголь из неорганических исходных веществ, а также из элементов ацетилен и бензол. Тем самым был уничтожен барьер между органическими и неорганическими веществами и из науки было изгнано понятие жизненной силы, которая будто бы необходима и играет решающую роль в образовании органических соединений. Бертло показал, что синтез органических соединений не только воспроизводит природные продукты, но может создавать соединения новые и не существующие в природе.

Благодаря деятельности Либиха к концу XIX в. на мировую химическую арену вырывается Германия. Причина этого лежит не только в том, что талантливый ученый показал практическую пользу химической науки для развития производительных сил страны, но главным образом в изменении экономического потенциала Германии после франко-прусской войны (1870...1871 гг.). Контрибуция[79], наложенная на побежденную Францию, способствовала приливу капитала в Германию и возникновению производств на основе органической химии. Возникающие акционерные общества объединяли химические предприятия, и к началу XX в. были созданы такие крупные фирмы, как «Баденские фабрики но производству анилина и соды», «Байеровское акционерное общество заводов по производству красителей», «Акционерное общество по производству анилина» и ряд других предприятий. Новым заводам и фабрикам нужны были кадры, и средства начали поступать в высшие учебные заведения и исследовательские учреждения. В 1900 г. был создан самый крупный к тому времени в мире химический институт при Берлинском университете. В 1911 г. возникло Общество содействия науки кайзера Вильгельма II, щедро финансируемое кругами, стремившимися к использованию науки для осуществления планов «мирового господства». Германия стала «химической державой Европы».