§ 5. Научное расследование причин катастроф. Открытие «особых» объектов и систем

We use cookies. Read the Privacy and Cookie Policy

§ 5. Научное расследование причин катастроф. Открытие «особых» объектов и систем

Научным открытием, позволившим найти причины многих техногенных катастроф (в том числе, возможно, и катастрофы аквапарка «Трансвааль»), стало открытие «особых» объектов и «особых» математических моделей, которые эти объекты описывают. «Особые» объекты — это те, для которых обычные и, вроде бы, многократно проверенные методы проектирования и расчета не дают правильного результата. «Особые» объекты ведут себя совсем не так, как предусмотрено самым добросовестным проектом и расчетом и могут, например, неожиданно обрушиться на головы беззаботных посетителей.

Именно «особым» объектом оказался аквапарк «Трансвааль» (точнее — здание аквапарка). Именно встреча с «особым» техническим объектом стала, возможно, несчастьем для жертв аварии. Она же стала бедой для Н. Канчели и А. Воронина.

«Особые» объекты и «особые» математические модели были открыты и исследованы в Санкт-Петербургском государственном университете (СПбГУ) в 1987—2000 годах. Там же (и в те же годы) были открыты неожиданные свойства эквивалентных преобразований. Эти открытия (и их следствия) один из исследователей назвал «одним из важнейших открытий конца двадцатого века, возможно, даже самым важным»!

Важность открытий, сделанных в СПбГУ, заключается в том, что эквивалентные преобразования (их называют еще равносильными преобразованиями) применяются практически во всех инженерных и экономических расчетах, изучаются в средней школе.

Даже сегодняшние «гуманитарии», наверное, помнят, как в средней школе им рассказывали о простейших эквивалентных (равносильных) преобразованиях:

1. Перенос членов из левой части в правую и наоборот с изменением знака;

2. Умножение всех членов на число, не равное нулю;

3. Подстановка — т. е. замена любого члена на член, равный ему.

Основное свойство эквивалентных преобразований — они не изменяют решений уравнений. Но при этом очень долгое время (вплоть до 1987 года) никто не замечал, что эквивалентные преобразования могут изменять некоторые важные свойства решений. Одно из важнейших свойств — при малых изменениях исходных данных решение должно изменяться мало. Такое свойство решений называют иногда — корректностью, иногда — параметрической устойчивостью. Это свойство важно потому, что на практике все исходные данные проектирования и расчета известны всегда с ограниченной, конечной точностью, да еще к тому же часто немного изменяются с течением времени.

Если при изменении исходных данных расчета (например — диаметра круглой колонны) на 1% результат расчета (например — критическая нагрузка колонны) изменится в два раза, то такой расчет, разумеется, никакого практического смысла не имеет. Здание, построенное по такому нелепому расчету, разумеется, обязательно рухнет. Корректность решений для практики важна, очень важна. Поэтому корректность всегда тщательно проверяют. Но в 1987 году в СПбГУ было открыто, что существуют особые объекты, в математических моделях которых корректность изменяется при эквивалентных преобразованиях. Для таких особых объектов традиционные методы проверки корректности не достоверны, и поэтому каждая встреча с особым объектом может обернуться аварией и даже катастрофой. Особые объекты были открыты так поздно потому, что они встречаются редко, но несмотря на свою редкость они очень опасны. Мы знаем, что и катастрофы происходят редко, не каждый день, но попасть в катастрофу никому не хочется.

Для того чтобы катастроф было меньше и наша жизнь стала безопаснее, надо уметь еще на стадии расчета и проектирования найти и выделить «особые» объекты. Об интереснейшей истории открытия особых объектов и разработки методов их распознавания и выделения мы далее расскажем, а пока приведем совсем простой числовой пример, который сразу прояснит суть дела. Никаких знаний, кроме школьной алгебры, для понимания примера не нужно.

Рассмотрим систему двух алгебраических уравнений:

(2?2 + 2)х =                                                          (1)

(?2+?)? = y                                                              (2)

с двумя переменными х и у и параметром ?.

Поскольку уравнения (1) и (2) однородны, то они, разумеется, имеют нулевое решение х = у = 0. Однако при некоторых значениях параметра ? система, состоящая из уравнений (1) и (2), имеет не нулевые решения. Значения параметра, при которых система однородных уравнений имеет не нулевые решения, называют собственными значениями (или собственными числами). Для системы (1) и (2) единственным собственным значением является ? = 1. Действительно, при подстановке в (1) и (2) значения ? = 1, система (1)-(2) переходит в систему:

4x = 2y                                                                      (3)

2x = у                                                                        (4)

и имеет, например, решения: х = 1; у = 2 или х = 2; у = 4 и многие другие. А вот при ? =

Данный текст является ознакомительным фрагментом.