1965 ГОД

We use cookies. Read the Privacy and Cookie Policy

1965 ГОД

Следуя программе престижных опережающих космических полетов, в СССР принято решение осуществить очередной космический полет с выходом человека в открытое космическое пространство. Те более, что американцы уже объявили о том, что к лету первый астронавт выйдет в открытое космическое пространство.

Наш новый космический корабль «Союз», из которого можно было бы спокойно выйти в открытый космос, задерживался с разработкой, изготовлением и испытаниями.

И тогда снова применили испытанный способ. Доработали космический корабль «Восток», приделав к одному из люков шлюзовую камеру. На старте она складывалась. В космосе разворачивалась. После выполнения операции выхода камера отстреливалась.

Упрощенно схема выхода была такой. Выравнивалось давление в возвращаемом аппарате развернутой шлюзовой камере. Один космонавт переходил в шлюзовую камеру. Люк в возвращаемый аппарат закрывался. Выходящий в космос космонавт, выравнивал давление в камере с давлением в открытом космосе, открывал люк шлюзовой камеры и осуществлял выход в открытый космос.

Затем все должно было происходить в обратном порядке. Космонавт входил в шлюзовую камеру, закрывал выходной люк. Выравнивалось давление в камере и возвращаемом аппарате, и космонавт возвращался к своему товарищу по полету.

Экипаж корабля естественно состоял из двух человек в скафандрах. Один должен был выходить в космос. Другой должен был страховать первого и помочь ему в случае необходимости.

Все подготовительные работы были выполнены, и в СССР успели осуществить выход в открытый космос раньше американцев.

18 МАРТА.

На орбиту выведен космический корабль «Восход-2» с экипажем:

Командир экипажа полковник Беляев Павел Иванович. Родился 26 июня 1925 года в селе Челищево Рослятинского района Вологодской области. В 1942 году поступил работать на завод. В 1943 году поступил в Ейское военное авиационное училище летчиков, которое окончил в 1945 году. Участник войны с Японией. Кончил в 1959 году Военно-воздушную академию. В Центре подготовки космонавтов с 1960 года Член КПСС с 1949 года.

Второй пилот экипажа подполковник Леонов Алексей Архипович. Родился 30 мая 1934 года в селе Листвянка Тисульского района Кемеровской области. Окончил в 1957 году Чугуевское военное авиационное училище летчиков. В Центре подготовки космонавтов с 1960 года. Член КПСС с 1957 года.

Первый скафандр для работы в открытом космосе был разработан для А. Леонова и П. Беляева, которых отобрали в конечном итоге для выполнения этого сложного и ответственного задания.

В их скафандрах использовались две герметичных оболочки, из которых одна была резервной, и вступала в действие только при повреждении основной.

Чтобы скафандр не раздувался до бесконечности под действием внутреннего давления, в нем использовалась силовая оболочка. В местах для сгиба рук и ног она была снабжена специальными шарнирами, чтобы обеспечить определенную подвижность космонавту. Использовались специальные шарниры и в перчатках космонавта

Для подгонки силовой оболочки на конкретного человека в скафандре имелась специальная троссовая система подтяга и регулировочные элементы на конечностях.

Поверх названных трех слоев скафандр покрывали несколькими слоями тончайшей метализованной пленки, которая в свою очередь покрывалась белой плотной тканью, имеющей высокие отражающие свойства. Эти последние слои скафандра надежно защищали космонавта от перегрева солнечными лучами и от переохлаждения.

Шлем скафандра защищал космонавта от травм при ударах. На нем также крепились смотровое стекло, герметично соединенное со шлемом, и светофильтр, защищающий лицо и глаза от тепловых и ультрафиолетовых лучей солнца.

Радиопереговорное устройство было расположено следующим образом: в непосредственной близости от губ и шлемофона вмонтированы микрофоны, а у уха телефоны.

Атмосферу внутри скафандра составляли несколько десятков литров кислорода, заполнявшие зазор между телом космонавта и герметичной оболочкой. Температура и давление внутри скафандра поддерживались автоматически системой жизнеобеспечения, которая располагалась и в самом скафандре и в установке, напоминающей ранец, закрепленный на спине.

В наспинном ранце были размещены запас кислорода в трех баллонах емкостью по 2 литра каждый. На корпусе ранца имелся зарядный штуцер для подзарядки баллонов кислородом в период подготовки к выходу. По специальному манометру можно было контролировать запас кислорода в баллонах. Крепился ранец на спине с помощью быстродействующего разъемного соединения.

Кислород подавался системой в скафандр непрерывно. Часть его использовалась космонавтом для дыхания. Другая часть обтекала тело, насыщалась углекислым газом, теплом, влагой, нагревалась, а затем выбрасывалась в атмосферу.

Давление в скафандре составляло 0,4 или 0,27 атмосферы. Работать с таким избыточным давлением непросто. Ведь для того, чтобы только сжать кисть руки в перчатке, требовалось усилие в 25 килограмм.

Остается рассказать о проблеме дыхания в космическом скафандре. Известно, что в обычных условиях человек дышит воздухом, состоящим на 78 % из азота и 21 % из кислорода. Остальные примеси составляют около 1 %.

Атмосферное давление составляет в среднем 760 мм. Рт. Столба.

Такой состав воздуха не меняется с поднятием на высоту, Однако, общее барометрическое давление атмосферного воздуха постоянно снижается с поднятием на высоту над поверхностью земли. На высотах полета космических кораблей это давление можно считать практически отсутствующим, то есть существует практически полный вакуум.

21 % кислорода на Земле от общего атмосферного давления составляет 160 мм. рт. столба, и только при таком давлении человек может нормально дышать. С подъемом на высоту это давление уменьшается и уже после шести километров у человека наступает кислородное голодание.

Кроме то, нельзя забывать, что 78 % азота в воздухе на высоте 7–8 километров переходят из растворенного состояния в организме человека в газообразное. При этом нарушается кровоснабжение важных органов деятельности человека. Возникают сильные боли.

На высотах более 20 километров азот закипает при нормальной температуре тела человека.

Вот почему для обеспечения нормальной жизнедеятельности человека нужно было создать в скафандре среду с избыточным давлением, превышающим атмосферное давление на данной высоте, и газовым составом, обеспечивающем нормальное дыхание.

В тоже время, если избыточное давление в скафандре делать слишком большим, то он будет раздуваться с поднятием на высоту и затруднять выполнение космонавтом запланированных операций.

В скафандре А. Леонова можно было установить два уровня давления 400 и 270 мм. рт. столба. При большом давлении легче дышать и Леонов использовал его практически все время своего выхода. Он нормально вышел из шлюза, выполнил основную работу по отходу и возвращению к кораблю, но включить кинокамеру не смог. Дело в том, что кнопка включения кинокамеры располагалась на правой штанине скафандра, и во время тренировок он простым опусканием руки вниз касался нужной кнопки. В реальном выходе, при том же давлении в скафандре, вакуум космоса оказался более глубоким, и скафандр раздулся более обычного. Поэтому те, кто смотрел документальные кадры о первом выходе в космос, недоумевали – почему Леонов так часто и лихорадочно хлопает себя по штанине. А он всего лишь искал кнопку, которая сдвинулась вниз, и дотянуться до нее было невозможно.

Более того. Из-за повышенного раздутия скафандра Леонов не смог с первого раза войти в шлюзовую камеру при возвращении. После нескольких неудачных попыток он принял рискованное решение – снизил давление в скафандре до 270 мм. рт. столба. А ведь физические и моральные силы Леонова уже были на пределе. Повышенная температура, значительное потоотделение, кровяное давление до 180, пульс 160. В таком состоянии решиться на снижение потребляемого организмом кислорода очень сложно. Но и другого выхода у Леонова не было. Решение оказалось верным. Леонов вошел в шлюзовую камеру, восстановил давление, выполнил успешно все последующие операции.

Принцип выхода в открытый космос через шлюзовую камеру так и остался главным в нашей космической программе. А сама шлюзовая камера в дальнейшем уже стала неотъемлемой частью конструкции будущей орбитальной станции, а не отстреливалась после завершения работ, как это было на корабле «Восход-2».

Выход А. Леонова помог практически решить многие вопросы деятельности космонавтов в открытом космосе.

Например. Оказалось, что отход и подход к кораблю с помощью страховочного фала представляет собой довольно сложную и опасную процедуру. Чем больше расстояние отхода от корабля, тем больше скорость возвращения космонавта к кораблю и скорость вращения самого космонавта.

Это влечет за собой не только потерю ориентировки, но и опасность повреждения скафандра и травм космонавта в момент соприкосновения с элементами корабля и станции. Ведь этими элементами могут быть и антенны, и перила, и другие выступающие части.

Кроме того. Чем больше длина фала, тем больше вероятность запутывания в нем космонавта Необходимо постоянно контролировать положение не только собственное, но фала, и корабля, и скорости вращения с перемещением.

Опасен и тепловой перегрев, так как может вызвать «солнечный удар», а следом не только потерю работоспособности, но и смерть.

Впервые неприятности перегрева испытал на себе А. Леонов. Метод снятия тепла в его скафандре за счет вентиляции чистого кислорода не был в полной мере эффективным. В результате нештатной ситуации и больших физических перегрузок температура его тела значительно повысилась, пот заливал не только тело, но и лицо. Сильно запотело и стекло шлем. Это ухудшало ему видимость в самые ответственные минуты выхода в космос.

Все скафандры соединялись с кораблем или станцией усиленным фалом для обеспечения безопасности космонавтов. В нем были также пропущены провода связи и управления.

19 МАРТА.

После полного и успешного выполнения программы космического полета на Землю возвратились космонавты Беляев П. И. и Леонов А. А.

При спуске космонавтам Беляеву и Леонову пришлось впервые использовать ручную ориентацию корабля перед спуском с последующей выдачей тормозного импульса. К этому пришлось прибегнуть из – за отказа в работе основной автоматической системы ориентации. Причем обнаружилась существенная особенность. Корабль оказался чрезвычайно чувствительным к малейшим перемещениям космонавтов. Он, как маленькая лодка на воде, кренился от малейшего изменения положения или перемещения космонавтов.

Беляев все же сориентировал корабль, но тормозной импульс выдал специально чуть больше расчетного. Он дал возможную поправку на свою ошибку в отсчет работы двигателя по секундам, чтобы с гарантией перелететь Европу. В результате, как и следовало ожидать, он перестарался и возвращаемый аппарат сел в глухие дебри Пермской тайги.

В сорокаградусный мороз, в полутораметровом снегу экипаж около двух суток боролся за свое существование, пока не подоспела помощь спасателей. Экипаж впервые реально испытал на себе все средства спасения и выживания, которые он осваивал на предварительных тренировках перед полетом.

Беляев П. И. награжден орденом Ленина и медалью Золотая Звезда. Ему присвоены звания Герой Советского Союза и Летчик-космонавт СССР.

Леонов А. А. награжден орденом Ленина и медалью Золотая Звезда. Ему присвоены звания Герой Советского Союза и Летчик-космонавт СССР

Чтобы завершить рассказ о полетах на космических кораблях «Восток» и «Восход», нужно разобраться еще хотя бы с основными формулировками и понятиями, связанными с пилотируемой космонавтикой. Вот некоторые из них.

Орбита – траектория движения космического летательного аппарата на основном участке полета.

Перигей – ближайшая к Земле точка орбиты космического аппарата.

Апогей – наиболее удаленная от Земли точка орбиты космического аппарата.

Линия апсид – линия, соединяющая точки апогея и перигея.

Восходящий узел орбиты – точка, в которой орбита пересекает плоскость экватора при переходе космического корабля из южной полусферы в северную.

Нисходящий узел орбиты – точка, в которой орбита пересекает плоскость земного экватора при переходе космического аппарата из северной полусферы в южную.

Линия узлов – линия, соединяющая восходящий и нисходящий узлы орбиты.

Наклонение орбиты – угол между плоскостью орбиты космического аппарата и плоскостью экватора.

Величина угла наклонения орбиты определяет границы географических широт, в пределах которых будет летать космический корабль. Чем больше наклонение орбиты, тем больше диапазон достижимых географических широт, но тем меньше вес выводимого на орбиту корабля. Последнее вызвано тем, что при увеличении наклона орбиты уменьшается энергия, передаваемая космическому кораблю за счет ее суточного вращения.

С полярной орбиты можно осматривать всю Землю, но для ее достижения требуются очень и очень многие энергетические затраты.

Одно и то же наклонение орбиты может быть получено при северо – восточном и юго – восточном направлении запуска ракеты – носителя. При старте с космодрома Байконур используется северо-восточное направление, так как в этом случае полет на участке выведения и непосредственно после отделения от ракеты-носителя проходит над территорией Казахстана и России. А это значит, что на наиболее ответственных участках полета наземные станции слежения и контроля могут осуществлять радио и телевизионную связь с кораблем, принимать телеметрическую информацию, более продолжительное время проводить измерения параметров орбиты.

На участке выведения от ракеты-носителя космического комплекса отделяются и падают на Землю отработавшие ступени. Выделить район для падающих частей естественно легче на собственной и дружественной территориях. Однако количество выделенных районов ограничено. Поэтому ограничены и возможные направления запусков ракет-носителей, а, следовательно, и величины угла наклонения.

Трасса выведения пролегает над малонаселенными районами и потому предполагаемый ущерб от падения обломков рассчитывается как минимальный.

Та же задача стоит перед учеными, конструкторами и при выборе возможных областей приземления возвращаемых аппаратов.

В уже выбранных районах выведения и спуска не допускают никакого строительства крупных промышленных объектов, не планируют расширение и развитие уже существующих населенных пунктов. И это понятно. Никто не хочет жить с осознанием того, что в любую минуту на голову может свалиться что-то тяжелое, от которого и убежать будет невозможно.

В СССР и теперь в России наклонение орбиты пилотируемых космических кораблей находится в пределах от 51 до 65 градусов. Большое наклонение было принято для первых космических кораблей. Затем практически была принята орбита выведения с наклонением 51,6 градуса. Но для интернациональных экипажей при автономных полетах широкий выбор угла наклона сохранялся, так как это позволяло экипажам проводить исследования природных ресурсов над территорией своих стран.

Если бы Земля была неподвижной, то есть не вращалась бы вокруг своей оси, то орбита космического корабля все время проходила бы над одними и теми же районами Земли. Однако Земля вращается не только вокруг Солнца, но и вокруг собственной оси. Вследствие этого вращения при заданном наклонении орбиты географические координаты мест, над которыми будет пролегать полет космического корабля, зависят от периода его обращения – времени одного полного оборота корабля вокруг Земли.

Эти координаты, соединенные одной линией, образуют трассу полета. Трасса каждого нового витка в пространстве точно такая же, как и предыдущего, но из-за собственного вращения Земли сдвинута к западу по долготе на угол поворота Земли относительно плоскости орбиты за период обращения. Долготное межвитковое расстояние сдвига за один оборот составляет 22,5 градуса.

Полный оборот плоскости орбиты космического корабля вокруг Земли завершается приблизительно через сутки. Можно подобрать период обращения орбиты таким, что к этому моменту корабль сделает целое число витков и его трасса совпадет с трассой предыдущих суток. То есть через сутки полета корабль может оказаться над той же точкой. Например, над точкой старта. Такие орбиты называют суточными.

Если период больше или меньше суточного, то трасса все время сдвигается по долготе соответственно к востоку или западу на величину, называемую суточным смещением трассы. Это особенно важно при полетах международных экипажей, так как каждому новому космонавту хочется получше разглядеть города и села своей страны, полностью выполнить запланированные эксперимент. Ради этого они готовы не спать несколько суток подряд. И практически всегда первую ночь никто из них не спит во время космического полета.

Некоторые объекты, правда, за время полета так и не попадают в поле зрения космонавтов. Например. На первом витке корабль проходит слева от объекта, а на следующем справа.

Через какое-то время положение нужного объекта может все-таки совпасть с трассой и даже будет в это время прекрасно освещен, но это еще не означает, что на объект не наползет сплошная облачность. И так далее и тому подобное. Космонавт может летать месяцами, но так и не увидит родной город со своей высокой орбиты.

Вследствие большой протяженности России в долготном направлении трасса полета в течение суток проходит через ее территорию 11 раз. Причем, корабль движется с юга на север, а орбита смещается с востока на запад.

Кроме того нужно помнить, что чем выше орбита полета, тем больше и период обращения.

Таким образом, изменяя период обращения или высоту полета, можно выбрать такую орбиту, что в каждые новые сутки можно будет фотографировать и изучать все новые и новые участки поверхности Земли.

Существенную роль при планировании полета играет выбор времени старта и допустимые пределы, в которых эти временные изменения возможны. В принципе старт космического корабля может состояться в любое время суток – и днем и ночью. Это как в авиации – взлететь можно в любую погоду. Вот только для посадки необходимы вполне определенные погодные условия и пригодный район.

У космонавтов время старта полностью зависит от программы предстоящего полета. Если полет автономный и предполагается в основном дистанционное зондирование звезд, то старт возможен в любое время и основные ограничения относятся к желаемым условиям посадки в конце полета.

Если стартующему кораблю предстоит стыковка, например с орбитальной станцией, то ему необходимо стартовать по принятой нашими учеными схемой стыковки в момент прохождения станции над космодромом. Всякие отклонения в ту или иную сторону влекут за собой дополнительные энергозатраты для коррекции орбиты корабля после вывода его на орбиту.

Кроме того, всегда желательно, чтобы космический корабль после завершения полета приземлялся на территории Казахстана или России в светлое время суток. Это значительно облегчает процесс поиска и спасения экипажа.

Обстановка в районе Казахстана общепринятый район посадки по условиям освещенности повторяется через 58 суток. Так что изменение времени старта влечет за собой и ухудшение условий работы экипажа и поисковиков в самый напряженный период завершения полета, когда организм членов экипажа значительно ослаблен, и им чрезвычайно необходима помощь в первые минуты и часы после возвращения на Землю.

При изменении времени старта космического корабля и неизменном наклонении орбиты и ее периода, плоскость орбиты по отношению к Солнцу располагается по разному. Следовательно, в значительных пределах меняются условия освещенности по трассе полета и условиях научных наблюдений Земли.

При расчете времени старта космического корабля обязательно учитывается необходимость контролируемого и точного построения ориентации космического корабля на орбите непосредственно перед будущим возвращением на Землю. Ориентация корабля необходима и перед фотографированием объектов, изучением звезд и перед выполнением других задач, которые требуют приведения космического корабля перед работой в строго определенное положение в пространстве.

Подобные эксперименты также планируются задолго до полета, и четко рассчитываются по времени, так как их выполнение связано с целым комплексом многочисленных условий по взаимному расположению объектов, с динамическими процессами и многим другим.

Важное значение при планировании старта имеет высота апогея и перигея орбиты, на которую выводится космический корабль. Эти величины в течение полета не являются постоянными для любого космического аппарата. На каждом витке, особенно в перигее космический корабль задевает атмосферу и получает определенное торможение. На следующем витке трасса полета проходит еще ниже, а следовательно плотность атмосферы и ее сопротивление увеличиваются, увеличивая при этом и эффект торможения. Как только скорость космического корабля станет ниже 8 километров в секунду, он неминуемо сойдет с орбиты по длинной, растянувшейся на несколько тысяч километров параболе и устремится к Земле. Вот только рассчитать точку посадки в этих условиях чрезвычайно трудно.

С другой стороны, тормозящий эффект атмосферы на высотах ниже 150 километров не позволяет летать за счет инерции. В этих случаях нужна постоянная работа двигателей для поддержания высоты за счет увеличения скорости полета, то есть работе двигателей на разгон. Иначе космический корабль по той же параболе снова устремится к Земле.

Отсюда возникло и такое понятие как время существования космического летательного аппарата на орбите, величина которого равна временному промежутку от выведения космического аппарата на орбиту до его входа в плотные слои атмосферы в пределах 100–150 километров.

Критическим значением периода обращения космического корабля на орбите, при котором еще обеспечивается орбитальный полет, считается время 87,75 минут при высоте 170 километров. Орбита при этом круговая.

Если орбита космического корабля не круговая, а эллиптическая, то очень важным параметром, определяющим время существования, является перигей. Именно в районе этих точек корабль наиболее сильно ощущает плотность атмосферы.

При высоте перигея 100 километров корабль войдет в атмосферу через виток.

При высоте перигея 200 километров время существования корабля уже около ста дней.

При высоте перигея 500 километров время существования корабля достигает десятков лет.

Цифры параметров орбиты могут изменяться в зависимости от многих условий на конкретный момент времени. Играют роль и гравитационные силы, и магнитное поле, и влияние Солнца. Однако ученые на первых этапах пилотируемых космических полетов учитывали в основном факт аэродинамического торможения атмосферы, используя его как один из резервов безопасности полета.

Ниже приводится таблица по космическим кораблям типа «Восток» и «Восход», а также более подробные данные по полету космического корабля «Восток -3».

Из таблицы видно, что все космические корабли серии «Восток» выводились на очень низкую орбиту в перигее, обеспечивая тем самым минимально необходимое время существования на орбите.

Если бы Г. Титова или любого другого космонавта, стартовавшего на этих кораблях, забросили бы слишком низко, то они не смогли бы летать больше суток и не выполнили бы программу полета. Атмосфера заставила бы их корабли приземлиться раньше.

В случае же, если бы корабль при старте забросили бы слишком высоко, а тормозная двигательная установка отказала, то корабль мог бы крутиться на орбите слишком долго и имеющиеся системы жизнеобеспечения не помогли бы космонавту выжить в этом полете. Их ресурс не рассчитан на значительное увеличение продолжительности существования человека в космическом полете.

Проводя дальнейшие расчеты снижения космического корабля «Восток-3» можно узнать, когда бы он приземлился в случае отказа тормозной двигательной установки. Для этого каждый может построить график снижения и убедиться в том, что не позже чем через 10 суток корабль сел бы за счет самоторможения.

Зная, что система жизнеобеспечения «Востоков» позволяла космонавту жить на орбите до 10 суток, можно наглядно убедиться в степени безопасности полетов космонавтов на этих кораблях при условии отличной работы стартовой команды.

Система жизнеобеспечения космических кораблей США в первых полетах обеспечивала существование астронавтов на орбите до трех суток. Их корабли поднимались на орбиту не выше 160 километров, что также обеспечивало им возможность возвращения в допустимые сроки.

Да, на первых порах ученые были очень осторожны в своих решениях и пытались обеспечить максимальную безопасность космонавтов. Во всяком случае, до тех пор, пока не была полностью отработана техника стартов. Сейчас, изготовленные на заводе, космический корабль и ракета-носитель доставляются на космодром Байконур и здесь в монтажно-испытательном корпусе МИКе собираются в единое целое.

Длина МИКа более 100 метров, высота с пятиэтажный дом. Поэтому сборка всех основных частей комплекса корабля и ракеты осуществляется горизонтальным способом и в таком же положении на железнодорожной платформе весь комплекс в сборе доставляется на стартовую позицию, расположенную в 1,5–2 километрах.

Обычно вывоз ракеты-носителя с космическим кораблем выполняют рано утром. И будь то зимой или летом, в леденящую стужу или знойную жару, вокруг состава, забегая с разных сторон, а то и забираясь в вертолет, снимают и снимают торжественный выезд фотокорреспонденты и кинооператоры.

Сама стартовая позиция не очень большая. Квадрат железобетона с отверстием в центре для хвостовой части ракеты-носителя. Мощный установщик устанавливает ракету-носитель в вертикальное положение, и как бы вставляет в пусковую систему, жестко закрепляя в верхней и нижней частях с помощью специальных ферм. Сюда же подводятся кабельная и заправочная мачты и ферма обслуживания.

Несмотря на тщательную проверку всех систем и агрегатов в МИКе, на стартовой площадке все проверки повторяются вновь. Ведь положение ракетно-космического комплекса изменилось с горизонтального на вертикальный, что могло привести к каким то изменениям в работе систем. Да и сама транспортировка могла внести коррективы в состояние систем.

В конце проверок ракета-носитель заправляется топливом и сжатыми газами.

В бункере командного пункта запуска руководитель работ, оценив все доклады, дает команду готовить космонавтов к посадке в корабль. Начинается отсчет времени непосредственной подготовки к полету.

Космонавты на площадке задерживаются не долго. Доклад, последние приветствия, пожелания, и они скрываются в лифте, а через несколько минут выходят на связь с командным пунктом со своих рабочих мест.

Космонавты и ракетно-космический комплекс готовы к старту.

Во время старта, как и во время стыковки, космонавты, космонавты находятся в скафандрах вентиляционного типа, которые не претерпели особых изменений со времен старта Ю. Гагарина. Хотя и был период, когда космонавты стартовали в космос без скафандров.

Нахождение в скафандре связано с повышением безопасности космонавтов в период работы на особо опасных участках полета.

Экипаж космического корабля «Восход» работал без скафандров

П. Беляев и А. Леонов находились в скафандрах только потому, что планировался выход в открытый космос.

В конечном итоге жизнь заставила конструкторов и космонавтов вернуться к варианту старта в скафандрах.

На выход в космос А. Леонова американцы ответили серией из пяти космических полетов космических кораблей «Джемини».

23 МАРТА.

На орбиту выведен космический корабль «Джемини-3» с экипажем Вирджил Гриссом и Джон Янг. Длительность полета 4 часа 53 минуты. Корабль испытан в пилотируемом варианте. Астронавты изменяли наклон и высоту орбиты, вручную сориентировали корабль перед спуском, включили тормозную двигательную установку.

Для Гриссома это был второй полет в космос.

3 ИЮНЯ.

На орбиту выведен космический корабль Джемини-4» с экипажем Джеймс Макдивитт и Эдвард Уайт. Полет продолжался 4 суток. В этом полете возвращаемый аппарат на орбите был разгерметизирован, и астронавт Уайт вышел в открытый космос без использования шлюзовой камеры. В космосе он передвигался не только с помощью фала, как Леонов. Для перемещения использовалась малогабаритная реактивная установка. Но от фала астронавт не освобождался. Страховка оставалась.

Для отработки операции стыковки было выполнено сближение со второй ступенью ракеты-носителя на дистанцию 120–600 метров по разным оценкам.

21 АВГУСТА.

На орбиту введен космический корабль «Джемини-5» с экипажем Гордон Купер и Чарльз Конрад. Полет продолжался более семи суток, значительно перекрыв рекорд В. Быковского. Были выполнены различные виды маневров с помощью двигателей корабля и наблюдение объектов в космосе, на земле и в океане. Астронавты работали с бортовой цифровой вычислительной машиной и радиолокатором, наблюдая за предварительно выброшенным контейнером.

Гордон Купер совершил свой второй космический полет.

28 ОКТЯБРЯ.

В слушатели отряда космонавтов зачислены еще 23 человека. Вот только перспективы будущих космических полетов остаются туманными. Следовательно, конкуренция кандидатов на полет будет очень серьезной.

4 ДЕКАБРЯ.

На орбиту выведен космический корабль «Джемини-7» с экипажем Фрэнк Борман и Джеймс Ловелл. Длительность полета уже 13 суток и 18 часов.

Уже в начале полета корабль сближался с ракетой-носителем до дистанции 15–20 метров. Затем Борман вручную осуществил ориентацию по звезде Спика, и изменил орбиту в перигее, повысив ее на 61 километр.

На вторые сутки астронавты сняли скафандры. Снова маневрировали и перешли на круговую орбиту, которая обеспечивала встречу с космическим кораблем «Джемини-6А».

15 ДЕКАБРЯ.

На орбиту выведен космический корабль «Джемини-6А» с экипажем Уолтер Ширра и Томас Стаффорд. Длительность полета 1 сутки. Первоначально их полет должен был состояться позже. Но ракету «Аджена», с которой должен был состыковаться экипаж «Джемини-7», не смогли запустить в космос.

Руководство НАСА приняло решение проверить все этапы стыковки с помощью двух пилотируемых кораблей. Так в космосе срочно оказался корабль «Джемини-6А».

Томас Стаффорд и Уолтер Ширра мастерски выполнили все операции. Они подходили к кораблю «Джемини-7» на расстояние от 1 до 30 метров, совершили облет корабля. Могли бы и состыковаться, но на кораблях были несовместимые стыковочные устройства. Поучилась отличная генеральная репетиция.

Уолтер Ширра стал уже третьим астронавтом, которые дважды побывали в космосе. Их можно было уже называть профессионалами космоса.

Возвращаемые аппараты космических кораблей «Джемини-6А» 16 декабря, а «Джемини-7» 18 декабря успешно приводнились в океане.

Данный текст является ознакомительным фрагментом.