Биографический справочник
Биографический справочник
Иоффе Абрам Федорович (1880–1960), русский физик и организатор науки. Родился 29 октября 1880 в г. Ромны Полтавской губернии в семье купца второй гильдии. Окончил Ромненское реальное училище (1897), затем Санкт-Петербургский технологический институт (1902). В 1903 г. отправился в Мюнхен к Рентгену, лучшему, по отзыву петербургских профессоров, физику, для приобретения опыта в постановке эксперимента по проверке созданной Иоффе еще в годы учебы в училище резонансной теории запаха и чувства обоняния.
Сначала работал практикантом, живя на собственные средства, потом получил место ассистента.
В 1906 г., отклонив лестное предложение Рентгена остаться в Мюнхене, вернулся в Россию. Был зачислен старшим лаборантом в Политехнический институт, в 1913 г., после защиты магистерской диссертации, стал экстраординарным профессором, а в 1915 г., защитив докторскую диссертацию, — профессором кафедры общей физики. Параллельно читал лекции в Горном институте и на курсах Лесгафта. В 1916 г. организовал в институте свой знаменитый семинар по физике. Его участниками были молодые ученые из Политехнического института и университета, вскоре ставшие ближайшими соратниками Иоффе при организации Физико-технического института (1918).
В 1918 г. Иоффе организовал физико-технический отдел в Рентгенологическом и радиологическом институте в Петрограде, в 1919 г. — физико-механический факультет в Политехническом институте для подготовки физиков, которые могли бы решать задачи, важные для промышленности, в 1932 г. — Агрофизический институт. По его инициативе начиная с 1929 г. были созданы физико-технические институты в крупных промышленных городах (Харькове, Днепропетровске, Свердловске, Томске), Институт химической физики АН СССР. В годы войны Иоффе участвовал в строительстве радиолокационных установок в Ленинграде, во время эвакуации в Казани был председателем Военно-морской и Военно-инженерной комиссий. В 1952–1955 гг. возглавлял лабораторию полупроводников АН СССР.
Капица Петр Леонидович (1894–1984), советский физик. Родился 26 июня 1894 г. в Кронштадте. Окончил Кронштадтское реальное училище (1912), затем Петроградский политехнический институт (1918). Руководителем дипломной работы Капицы был академик А.Ф. Иоффе. На его же кафедре Капица остался работать после окончания института. В 1921 г. вместе с Иоффе и другими учеными отправился в командировку в Англию. Занимался приобретением оборудования для научных учреждений России, работал в Кембриджском университете у Э. Резерфорда. Здесь выполнил исследования по а- и 0- излучению, создал метод получения сильных магнитных полей. За эти работы в 1923 г. получил премию им. Дж. Максвелла. В том же году получил степень доктора философии в Кембриджском университете. С 1924 г. — помощник директора Кавендишской лаборатории. В 1925 г. был избран членом совета Тринити-колледжа, в 1929 г. — членом Лондонского королевского общества и членом-корреспондентом АН СССР. В 1930 г. возглавил лабораторию Монда Королевского общества, специально созданную для проведения работ под его руководством.
В 1934 г. Капица приехал в отпуск в СССР, но вернуться обратно в Кембридж ему не разрешили. В 1935 г. он возглавил Институт физических проблем в Москве. В 1939 г. был избран действительным членом Академии наук СССР. Лауреат Сталинских премий 1941 и 1943 гг. по физике.
В 1946 г. Капица был снят с поста директора, и ему пришлось заниматься исследованиями в созданной им на даче частной лаборатории. В 1939–1946 гг. был профессором МГУ, с 1947 г. — профессором МФТИ. В 1955 г. Капица был вновь назначен директором Института физических проблем. В том же году стал главным редактором «Журнала экспериментальной и теоретической физики».
Наибольшую известность Капице принесли его новаторские экспериментальные исследования в области физики низких температур, создание техники для получения импульсных сверхсильных магнитных полей, работы по физике плазмы. В 1924 г. ему удалось получить магнитное поле напряженностью 500 кГс. В 1932 г. Капица создал ожижитель водорода, в 1934 г. — ожижитель гелия, а в 1939 г. — установку низкого давления для промышленного получения кислорода из воздуха. В 1938 г. открыл необычное свойство жидкого гелия — резкое уменьшение вязкости при температуре ниже критической (2,19 К); это явление называют теперь сверхтекучестью. Данные исследования стимулировали развитие квантовой теории жидкого гелия, разработанной Л. Ландау. В послевоенный период внимание Капицы привлекает электроника больших мощностей. Им были созданы магнетронные генераторы непрерывного действия. В 1959 г. он экспериментально обнаружил образование высокотемпературной плазмы в высокочастотном разряде. Капица был членом многих зарубежных академий наук и научных обществ, награжден медалями М. Фарадея (1942), Б. Франклина (1944), М.В. Ломоносова (1959), Н. Бора (1964), Э. Резерфорда (1966).
В 1978 г. удостоен Нобелевской премии «За фундаментальные открытия и изобретения в области физики низких температур».
Ландау Лев Давидович (1908–1968), советский физик-теоретик. Родился 9 января 1908 г. в Баку. В 14 лет окончил 8-й класс средней школы и поступил в Бакинский государственный университет. В 1924 г. перевелся на физический факультет Ленинградского государственного университета, который окончил в 1927 г. С 1926 по 1929 г. — аспирант Ленинградского физико-технического института. В 1929 г. находился на стажировке у Н. Бора в Копенгагене, побывал в других научных центрах Европы. В 1931 г. вернулся в Ленинград и работал научным сотрудником Физико-технического института, в 1933 г. возглавил теоретический отдел Украинского физико-технического института в Харькове и кафедру теоретической физики Харьковского университета. В 1937 г. стал заведующим теоретическим отделом созданного П. Л. Капицей Института физических проблем в Москве, с 1943 г. — профессор МГУ. С 1947 по 1950 г. Ландау был также профессором МФТИ. Действительный член АН СССР (с 1946 г.), трижды лауреат государственной премии.
Как и большинство выдающихся физиков-теоретиков, Ландау отличался широтой научных интересов. Его первые работы были посвящены квантовой механике. В 1937 г. Ландау, получив соотношение между плотностью уровней в ядре и энергией возбуждения, стал одним из создателей статистической теории ядра. В 1959 г. он предложил принцип сохранения комбинированной четности вместо обычного закона сохранения четности, нарушаемого при слабых взаимодействиях.
Одно из центральных мест в исследованиях Ландау занимала термодинамика фазовых переходов II рода. Результатом их детального изучения стало создание теории фазовых переходов. В 1940–1941 гг. Ландау разработал теорию сверхтекучести жидкого гелия, положившую начало физике квантовых жидкостей. В своем анализе опирался на понятия фононов и ротонов (высокоэнергетических возбуждений, связанных с вращательным движением). Дальнейшим развитием физики квантовых жидкостей стало создание в 1956 г. теории бозе- и ферми-жидкостей. В духе идей теории фазовых переходов Ландау совместно с В.Л. Гинзбургом создал в 1950 г. теорию сверхпроводимости. Существенных результатов достиг в области гидродинамики, физической кинетики и физики плазмы.
Значительное место в наследии Ландау занимает написанный им совместно с Е.М. Лившицем «Курс теоретической физики».
В 1962 г. удостоен Нобелевской премии по физике «За пионерские работы в теории конденсированного состояния, в особенности жидкого гелия».
Маркони Гульельмо (1874–1937), итальянский инженер и предприниматель. Родился 25 апреля 1874 г. в Болонье. Получил домашнее образование. В юношеские годы занимался физикой под руководством итальянского ученого А. Риги. Заинтересовавшись открытиями в области радиосвязи, сделанными А.С. Поповым, скопировал его радиоприемник и в 1894 г. поставил опыты по передаче сигналов на короткие расстояния с помощью электромагнитных волн. Усовершенствовав первый в мире радиоприемник А.С. Попова и приборы, созданные Н. Теслой, осуществил передачу и прием сигналов на расстоянии более 3 км.
Не получив поддержки в Италии, Маркони в 1896 г. отправился в Англию, где заинтересовал своими приборами Почтовое ведомство и Адмиралтейство. В том же году получил патент «на усовершенствования в передаче электрических импульсов и сигналов и в соответствующей аппаратуре».
В 1898 г. осуществил радиосвязь через Ла-Манш, а в 1901 г. — через Атлантический океан: сигналы передавались со станции на полуострове Корнуолл (Англия), а принимались в Сент-Джонсе на острове Ньюфаундленд (Канада). Этот первый трансатлантический сеанс радиосвязи опроверг утверждения некоторых физиков о том, что радиоволны вследствие искривления земной поверхности будут распространяться на расстояние лишь до 300 км. Маркони запатентовал и другие устройства для радиосвязи: магнитный детектор, антенну и искровое устройство для генерации радиоволн. Свою первую компанию «Уайрлесс телеграф энд сигнал компани» Маркони основал в Англии в 1897 г., а через три года она была преобразована в «Маркони уайрлесс телеграф компани».
Деятельность Маркони сыграла важную роль в развитии радиотехники и в распространении радио, однако его продолжали донимать судебными исками, в которых оспаривался его приоритет в изобретении радио. В 1915 г. Федеральный суд США решил все дела о приоритете в его пользу, однако в 1943 г. Верховный суд США аннулировал основные патенты Маркони, признав приоритет другого изобретателя — Николы Теслы.
В 1909 г. году Маркони совместно с Фердинандом Брауном получил Нобелевскую премию по физике за вклад в развитие беспроволочной телеграфии.
Попов Александр Степанович (1859–1906) — выдающийся русский ученый в области физики и электротехники, изобретатель электрической беспроводной связи (радиосвязи, радио).
Родился 4 марта 1859 г. на Урале в поселке Турьинские Рудники (современная Екатеринбургская область) в семье священника. Начальное образование получил в духовной семинарии Перми.
В 1882 г. с отличием окончил физико-математический факультет Петербургского университета. По окончании университета был приглашен преподавать электротехнику в Кронштадтское техническое училище при Морском ведомстве (1883–1901). В хорошо оборудованном классе Попов в свободное от преподавания время проводил опыты и изучал электромагнитные колебания, открытые великим ученым Г. Герцем.
В 1895 г. Попов изобрел приемник электромагнитных волн и продемонстрировал возможность регистрации последовательности электрических сигналов на расстоянии без проводов (радиосвязь).
Весной того же года Попов сделал публичный доклад о своем изобретении и результатах исследований. Этот день, 7 мая, является Днем радио в нашей стране.
Уже к лету 1897 г. Попов достиг дальности передачи радиосигнала до пяти километров.
В 1889–1900 гг. Попов проводил экспериментальные опыты на Черном и Балтийском морях.
После достижения дальности радиосвязи до 50 км Морское министерство ввело на судах российского флота беспроволочный телеграф.
Вместе со своими коллегами, учеными П. Рыбкиным и Д. Троицким, Попов запатентовал в 1901 г. изобретенный ими на основе эффекта Когерера «телефонный приемник депеш» для слухового приема радиосигналов в наушниках.
С 1901 г. Попов становится профессором физики, а в 1905 г. Александр Степанович занимает должность директора Петербургского электротехнического института.
В июне 1896 г. итальянский физик Г. Маркони в Великобритании официально запатентовал изобретение, точно повторяющее схему устройства, опубликованную ранее в России Поповым. Этот факт вынудил Александра Степановича выступить со специальными заявлениями в российской и зарубежной печати о своем приоритете в изобретении радиопередачи.
В 1900 г. на Всемирной выставке в Париже изобретение Попова было удостоено Большой золотой медали.
13 января 1906 г. (по новому стилю) Александр Степанович скоропостижно скончался в Петербурге.
Его имя носят Школа связи в Кронштадте, Центральный музей связи и Высшее военно-морское училище в Санкт-Петербурге, улицы в различных городах России.
Тесла Никола (1856–1943), американский изобретатель сербского происхождения.
Родился 10 июля 1856 г. в Смиляне (Хорватия). Окончил Политехнический институт в Граце (1878) и Пражский университет (1880). Работал инженером в Будапеште и Париже. В 1884 г. приехал в Нью-Йорк, организовал лабораторию и вскоре изобрел генератор двухфазного переменного тока. Тесла разработал несколько конструкций многофазных генераторов, электродвигателей и трансформаторов, а также систему передачи и распределения многофазных токов. Позже такая система была применена на гидроэлектростанции Ниагарского водопада. В 1888 г. Тесла открыл явление вращающегося магнитного поля, на основе которого построил электрогенераторы высокой и сверхвысокой частот. В 1891 г. сконструировал резонансный трансформатор (трансформатор Теслы), позволяющий получать высокочастотные колебания напряжения с амплитудой до 106 В, и первым указал на физиологическое воздействие токов высокой частоты. Исследовал возможность беспроволочной передачи сигналов и энергии на значительные расстояния, в 1899 г. публично продемонстрировал лампы и двигатели, работающие на высокочастотном токе без проводов. Построил радиостанцию в Колорадо-Спрингс и радиоантенну в Лонг-Айленде. Именем Теслы названа единица измерения плотности магнитного потока (магнитной индукции). Умер Тесла в Нью-Йорке 7 января 1943 г.
Френкель Яков Ильич (1894–1952), русский физик-теоретик. Родился 10 февраля 1894 г. в Ростове-на-Дону. В 1913 г. поступил на физико-математический факультет Санкт-Петербургского университета. Весной 1917 г. семья переехала в Крым. Здесь Френкель принял участие в организации Таврического университета, где работал до 1921 г. Затем вернулся в Петроград и до конца жизни работал в Физико-техническом институте в качестве руководителя теоретического отдела. Одновременно преподавал в Политехническом институте, где на протяжении 30 лет возглавлял кафедру теоретической физики. В 1929 г. был избран членом-корреспондентом Академии наук СССР.
После революции Френкель трижды был за границей: работал у Паули в Гамбурге и у Бора в Гёттингене (1925–1926), был участником Международного съезда физиков в Италии (1927), читал лекции в Университете Миннесоты (США) в 1930–1931 гг. Внес значительный вклад в такие разделы физики, как электронная теория твердого тела, физика конденсированного состояния вещества, квантовая механика и электродинамика, физика ядра, физика элементарных частиц, магнетизм, физическая химия, астрономия, геофизика.
Первая научная публикация Френкеля о двойных электрических слоях на поверхности твердого тела и жидкости появилась в 1917 г. В дальнейшем целый ряд его работ был посвящен сопоставлению жидкости и твердого тела, развитию представлений о ближнем и дальнем порядке в конденсированных средах. Разрабатывая в 1923–1929 гг. электронную теорию твердых кристаллических тел, в том числе металлов, Френкель впервые применил к изучению движения электронов в них методы квантовой статистики; кроме того, он ввел понятие дефекта кристаллической решетки (отсутствие атома в соответствующем узле кристаллической решетки, ныне называемое «дефектом по Френкелю»), что позволило ему описать не только электропроводность, но и упругость, так что в его интерпретации теория упругости стала как бы разделом теории электричества. В частности, в 1927 г. Френкель описал движение свободных электронов в металлах с помощью представления о волнах де Бройля, что позволило ему объяснить поведение электронов проводимости в металлических кристаллах и зависимость их электропроводности от температуры и наличия примесей в кристаллической решетке.
Исследуя ферромагнетизм, Френкель в 1928 г. создал его качественную теорию: применив принцип Паули к электронному газу, объяснил самопроизвольную намагниченность ферромагнетиков, а в 1930 г. ввел понятие спонтанно намагниченных областей — доменов. Эти работы Френкеля стали фундаментом теории ферромагнетизма. Предложенное им в 1946 г. объяснение спекания металлических порошков легло в основу порошковой металлургии.
В 1930–1936 гг. Френкель создал квантовую теорию электрических и оптических свойств диэлектрических кристаллов. Впервые ввел в теорию поглощения света кристаллами понятие электронной дырки (атома решетки, лишенного одного из своих электронов) как носителя положительного заряда и экситона — носителя возбуждения. Френкель фактически создал теорию фотопроводимости диэлектриков и полупроводников; дал квантомеханическое описание туннельного эффекта и в 1932 г. применил его к протеканию тока в месте контакта «металл — полупроводник».
Начиная с 1928 г. Френкель успешно развивал аналогии между макроскопическими процессами — испарением обычных твердых и жидких тел и процессами микроскопическими — диссоциацией отдельных молекул и распадом возбужденных ядер. Он внес серьезный вклад в кинетическую теорию жидкостей, описав температурную зависимость их диффузии, вязкости и упругости, предложил общие уравнения упруго-вязкой среды. В дальнейшем занимался кинетикой фазовых переходов, адсорбцией, гетерофазными флуктуациями.
Мировое признание получили и работы Френкеля в области общих разделов физической теории. Ученый занимался электродинамикой точечного электрона и электрона вращающегося; сопоставлением «старой» и «новой» квантовой механики; релятивистскими обобщениями квантово-механических уравнений. Новые идеи Френкель внес в геофизику. Разрабатывал теорию атмосферного электричества, занимался выяснением природы земного магнетизма и других явлений в недрах Земли.
Научные интересы Френкеля пересекались с деятельностью многих выдающихся физиков современности. Так, независимо от Бора и Уилера и чуть раньше их (хотя и не в столь подробной форме) Френкель создал теорию деления тяжелых ядер; независимо от Гейзенберга — квантово-механическую теорию ферромагнетизма; независимо от Бора — капельную модель ядра.
Эйнштейн Альберт (1879–1955), выдающийся физик-теоретик. Родился в Ульме германского округа Вюртемберг в семье мелкого коммерсанта. Учился в католической народной школе в Ульме, а после переезда семьи в Мюнхен — в гимназии. В учебе предпочитал самостоятельные занятия по геометрии и чтение популярных книги по естествознанию, при этом сумел овладеть дифференциальным и интегральным исчислением. В 1895 г., не окончив гимназии, пытался поступить в Федеральное высшее политехническое училище в Цюрихе, но не сдал экзамены по языкам и истории. Доучившись в кантональной школе в Аарау, без экзаменов поступил в Цюрихский политехникум, где много времени проводил в физических лабораториях и библиотеках, читая классические труды Г. Кирхгофа, Дж. Максвелла и Г. Гельмгольца.
После окончания политехникума он долго не мог найти работу, пока в 1902 г. не получил по протекции место технического эксперта в Бернском патентном бюро, где и проработал до 1907 г. В 1905 г. в немецком журнале «Анналы физики» (Annalen der Physik) вышли три работы Эйнштейна, принесшие ему всемирное признание и славу: «О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты», «Об одной эвристической точке зрения, касающейся возникновения и превращения света», «К электродинамике движущихся тел». С этого момента возник пространственно-временной континуум специальной теории относительности, были с новых позиций объяснены фотоэффект и броуновское движение, а масса превратилась в форму энергии.
Вначале Эйнштейн рассмотрел некоторые проблемы молекулярной физики, связанные со статистическим описанием теплового движения атомов и молекул, известного как броуновское; с помощью статистических методов он показал, что между скоростью движения взвешенных частиц, их размерами и коэффициентами вязкости жидкостей существует экспериментально проверяемое количественное соотношение. Последующие его работы по теории света основывались на квантовой гипотезе М. Планка, выдвинутой им в 1900 г., и в них Эйнштейн рассматривал квантование самого потока света в его фотонной интерпретации. Так он объяснил фотоэффект, состоящий в выбивании электронов из металла световыми лучами и ранее не укладывавшийся в рамки волновой теории света.
В том же 1905 г. была опубликована работа Эйнштейна, в которой излагалась специальная теория относительности (СТО), основанная на расширенном постулате относительности Галилея и принципе постоянства скорости света. Из СТО Эйнштейн вывел взаимосвязь массы и энергии, позволившую упростить законы сохранения в единый принцип постоянства массы и энергии в замкнутых системах при любых процессах. Сегодня этот закон составляет основу всей атомной физики.
В 1909 г. Эйнштейн получил место экстраординарного профессора на кафедре теоретической физики Цюрихского университета, а вскоре последовало почетное приглашение на кафедру теоретической физики Немецкого университета в Праге. Там в 1911 г., исходя из принципа относительности, он заложил основы релятивистской теории тяготения, высказав мысль, что световые лучи должны отклоняться в поле тяготения, и изложив свои выводы в статье 1911 г. «О влиянии силы тяжести на распространение света». В 1919 г. английская астрофизическая экспедиция Эддингтона подтвердила выводы Эйнштейна.
Летом 1912 г. Эйнштейн возвратился в Цюрих на новую кафедру математической физики Высшей технической школы, где приступил к дальнейшему развитию математического аппарата теории относительности. Результатом совместных с его соучеником Марселем Гроссманом усилий стал фундаментальный труд «Проект обобщенной теории относительности и теории тяготения» (1913). В том же году Эйнштейн был избран в Берлинскую академию наук и переехал в Берлин для работы в Университете Гумбольдта, где в должности директора Физического института провел последующие 19 лет. Здесь он закончил общую теорию относительности (ОТО), показав, что гравитацию можно свести к изменению геометрии пространства — времени вокруг тяготеющих тел. В 1915 г. Эйнштейн попытался распространить ОТО на Вселенную в целом и получил модель замкнутого мира. В 1922 г. космологию Эйнштейна рассмотрел петербургский математик А.А. Фридман, придя к динамической модели, в которой радиус кривизны Вселенной возрастает во времени.
В 1921 г. был удостоен Нобелевской премии по физике с формулировкой «За основные работы в области теоретической физики, особенно за создание квантовой теории света».
В 1916–1917 гг. вышли работы, содержащие квантовую теорию излучения Эйнштейна. В них рассматривались вероятности переходов между стационарными состояниями атома Бора — Резерфорда и выдвигалась идея индуцированного излучения, в дальнейшем это стало теоретической основой создания квантовых генераторов.
В конце 1920-х гг. разгорелась дискуссия вокруг «натурфилософских» основ квантовой физики, где Эйнштейн выступил против копенгагенской школы Н. Бора. Дискуссия продолжилась на Сольвеевских конгрессах 1927 и 1930 гг., где разгорелась полемика между Эйнштейном и Бором, продолжавшаяся долгие годы и так и не убедившая его в вероятностной природе квантовой механики. В конце 1920-х гг. Эйнштейн стал уделять все больше времени разработке единой теории поля, призванной объединить в одной модели электромагнитное и гравитационное поля. Однако на этом пути он так и не достиг решающего результата.
После прихода нацистов к власти в Германии в 1933 г. Эйнштейн заявил о своем выходе из Берлинской академии наук и отказался от немецкого гражданства. С октября 1933 г. он приступил к работе в Принстонском институте высших исследований, где до самой своей кончины занимался созданием единой теории поля.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
БИОГРАФИЧЕСКИЙ СЛОВАРЬ
БИОГРАФИЧЕСКИЙ СЛОВАРЬ Список русских масонов XX века включает несколько французских братьев, которые были за их заслуги перед русским масонством кооптированы особым церемониалом в русские ложи, как Досточтимые Мастера (термин, иногда сокращаемый Д.М.)– Эта традиция
1. «Биографический» параллелизм
1. «Биографический» параллелизм Одни из самых популярных в «античной» истории героев — это Юлий Цезарь, Помпей, Сулла и Брут. Всем нам с детства знакомы многочисленные произведения, исторические романы, кинофильмы, посвященные этой замечательной эпохе. Как мы увидим,
Биографический справочник
Биографический справочник Иоффе Абрам Федорович (1880–1960), русский физик и организатор науки. Родился 29 октября 1880 в г. Ромны Полтавской губернии в семье купца второй гильдии. Окончил Ромненское реальное училище (1897), затем Санкт-Петербургский технологический институт
БИОГРАФИЧЕСКИЙ СПРАВОЧНИК
БИОГРАФИЧЕСКИЙ СПРАВОЧНИК АвтаритВождь галльских наемников, задействованных Карфагеном в Сицилии. Римляне захватывают Сицилию, а галльские наемники, не дождавшись обещанного жалованья, отправляются требовать его в Африку. Но карфагенский сенат решает не платить.
БИОГРАФИЧЕСКИЙ СПРАВОЧНИК
БИОГРАФИЧЕСКИЙ СПРАВОЧНИК Абага-хан (Ilkhan Abaqa Quan) (? — 1282) — сын Хулагу и племянник Хубилая. Второй ильхан Персии (с 1265). Покровительствовал учёным и поэтам, добился повышения благосостояния страны. Проводил активную антимусульманскую политику, опираясь одновременно на
Историко биографический комментарий
Историко биографический комментарий Азеф Евно Фишелевич (1869–1918), ростовский мещанин, оперативные клички «Ратаев», «Виноградов» и другие, один из организаторов и лидеров «боевой организации» партии социалистов-революционеров (БО ПСР). С 1893 года являлся секретным
Биографический указатель
Биографический указатель Август II, король польский и курфюрст саксонский (Фридрих-Август I) (1670–1733) за громадную физическую силу прозванный «Сильным», второй сын саксонского курфюрста Иоанна Георга III. После смерти брата Иоанна Георга III получил саксонское
2. Краткий биографический справочник
2. Краткий биографический справочник Манефон – принятое написание имени египетского историка, но переписчик Иосифа Флавия сохранил имя Манефос. Родом из города Себеннита (Нижний Египет), отсюда его второе имя – Себеннит, верховный жрец в Гелиополе; жил в IIIвеке до н. э.,
СПРАВОЧНИК «ГИМЕНЕЯ».
СПРАВОЧНИК «ГИМЕНЕЯ». Новые колоссы. Хитрый плебей. Самый верный доход. Союз с деревьями. Что какая земля любит? Пестрая почва. Вернуть все! Каша, сдобренная пеплом. На поклон к врагу. ...Книжонка была небольшая, размером пять на шесть дюймов, с
ДОСЬЕ КРАТКИЙ БИОГРАФИЧЕСКИЙ СПРАВОЧНИК ОБ ОСНОВНЫХ УЧАСТНИКАХ ОПИСЫВАЕМЫХ СОБЫТИЙ
ДОСЬЕ КРАТКИЙ БИОГРАФИЧЕСКИЙ СПРАВОЧНИК ОБ ОСНОВНЫХ УЧАСТНИКАХ ОПИСЫВАЕМЫХ СОБЫТИЙ А брат твой, а брат твой в Сибири Давно кандалами звенит. (Русская народная песня) Авксентьев Николай Дмитриевич — 40 лет в 1918 г., родился в Пензе, выходец из дворянской семьи. Учился в