1. Активная паровая турбина

1. Активная паровая турбина

Лаваль

Кровавый отблеск одной из мрачнейших страниц истории лежит на имени де Лавалей. Это был старинный французский дворянский род, по религиозным своим верованиям принадлежавший к протестантам; во Франции протестанты назывались гугенотами. Подвергаясь преследованиям со стороны католической церкви, многие из гугенотов покинули родину после Варфоломеевской ночи, когда правящая партия организовала массовое их истребление.

Один из них, именно Клод де Лаваль, вступил в ряды шведских войск и переселился в Швецию. Все дети, внуки и правнуки его, следуя традиции рода, служили на военной службе. Капитаном шведской армии был и Яков де Лаваль. Выйдя в отставку, он получил, по обычаю того времени, вместо пенсии «капитанское поместье» в Далекарлийской провинции северной Швеции. 9 мая 1845 года у него родился сын, названный при крещении Карлом-Густавом-Патриком.

До двенадцати лет мальчик не покидал пределов зеленой долины, где живописно расположился маленький поселок с церковью посреди двух десятков крестьянских жилищ. Но еще задолго до школьного возраста маленький Густав Лаваль выучился читать и писать, рассматривая чертежи и планы отца, исполнявшего обязанности землемера. На них такими смешными и загадочными топографическими знаками изображались деревья, колодцы, ручейки и дороги. Мальчик не проявлял большой склонности к усидчивым занятиям и книгам. Гораздо более его занимали обломки старых часов, испорченные замки и инструменты, заменявшие ему игрушки. Таинственный механизм всех этих вещей поражал его воображение.

Капитан Яков де Лаваль очень рано отказался от мысли видеть своего сына офицером. Военно-феодальная Знать Швеции в это время уступала место окрепшей и подходившей вплотную к власти промышленной буржуазии. Традиции рода уже не имели значения для потомка Клода де Лаваля, и отец не только не препятствовал развитию склонностей своего сына, но и сам мечтал сделать из него инженера и промышленника. Яков Лаваль взял на себя обязанности учителя, чтобы не отдавать мальчика в руки священника, занимавшегося с детьми в приходской школе й не желавшего прививать детям новые взгляды на жизнь.

Таким образом, этот маленький далекарлиец, закаленный, сильный и смелый, но простодушный и приветливый, как все жители этой провинции, получил свое первоначальное образование дома. Оно было таково, что, когда двенадцатилетний Густав поступил в фалунскую среднюю школу, он сразу же выдвинулся среди своих сверстников и развитием и необычайной любознательностью.

Окончив школу, Лаваль поступил в Технологический институт в Стокгольме. Он избрал своей специальностью кораблестроение. Трехлетнее пребывание в столице имело огромное значение для юноши. Лаваль не был поэтом, и не древность города, хранящего массу воспоминаний о былой славе Швеции, не красота природы этой «северной Венеции», расположенной на гранитных скалах среди озер и парков, пленяли ум и сердце юноши. Его привлекали к себе шумный порт, корабли, выгружавшие товары и машины, живая суета городской жизни.

С детских лет Лаваль был непоседлив, стремителен и решителен. Даже оживленная сутолока порта казалась ему ленивой и тихой толкотней. Взбираясь вприпрыжку по гранитным ступеням набережной, он с презрением думал о медлительности северян: грузчики ступали слишком лениво, лошади двигались слишком вяло. Кипы кож, железная руда, мешки с овсом, бочки с дегтем, лес — все, что вывозила шведская промышленность, носило какой-то деревенский, кустарный характер. Все кричало об отсталости, о лености, о неумении вести дело. Главное же, все это передвигалось раздражающе медленно, в то время как должно было бы вращаться с феерической быстротой в круговороте торгово-промышленного хозяйства.

Лаваль шел в свое общежитие, садился за книги, но вдруг вскакивал и начинал ходить из угла в угол. Его окружал мир необычайных видений, где машины стучали, дрожали, выкидывали миллионы самых разнообразных вещей в богатый, радостный, солнечный мир.

В 1866 году Лаваль окончил наконец свой курс, но ему не так-то легко оказалось найти себе подходящую работу. В конце концов, не найдя места по своей специальности, он вынужден был поступить конторщиком в материальный склад Фалунских рудников. Жестоко страдая от холода в дощатом сарае, он выдавал рудничным рабочим инструменты, селедку и соль. В техниках и инженерах шведская промышленность не очень нуждалась.

В то время в Фалуне работал известный гидротехник Венстрем. Кто-то рассказал ему, смеясь, о морском инженере, работающем конторщиком на рудниках. Венстрем пригласил Лаваля в свою контору чертежником. Здесь-то Лаваль и сделал открытие: оказалось, что те математические формулы, к которым он и его школьные товарищи относились как к необходимому злу, полагая, что они никогда не понадобятся им в жизни, были нужнее всего; оказалось, что именно математика помогает строить дешевле и лучше, заставляет механизмы двигаться быстрее, производить больше.

Пока Лаваль исполнял мелкие работы, он еще чувствовал себя сносно, но, как только ему случилось однажды произвести сложный расчет, обнаружилась недостаточность его знаний.

Молодой инженер понял, что без настоящей подготовки ему не выполнить ни одного из тех замыслов, которые волновали его воображение. Сдавая свою работу Венстрему, Лаваль заявил тут же, что он больше работать у него не может.

Старый инженер посмотрел на него, как на сумасшедшего.

— Что же, вы предпочитаете развешивать селедки? — спросил он.

— Нет, — спокойно ответил Лаваль. — Но для серьезной работы у меня не хватает знаний.

— И что же вы хотите делать?

— Учиться.

Венстрем внимательно посмотрел на юношу.

— Но как же вы будете жить? — воскликнул он.

— Не знаю. Во всяком случае, прежде чем жить, надо учиться.

Живой и решительный, он, не колеблясь ни одной минуты, перешел от решения к делу. Ссылаясь на свое громкое имя, он начал добиваться от фалунской дворянской организации стипендии для продолжения образования. Он ходил, просил, требовал, ругался, доставал рекомендации и все-таки вынудил фалунских дворян предоставить ему стипендию. Обеспечив себя таким образом, он уехал в Упсалу и поступил на математический факультет университета. Через пять лет он окончил его с высшей степенью отличия и после блестящей защиты диссертации получил звание доктора философии. Это звание присваивалось, независимо от специальности, всем оканчивавшим университет.

Запрятав свои дипломы в карманы лоснящегося, рыжего сюртука, Лаваль отправился на север в поисках места. В дороге он получил от администрации Фалунских рудников предложение отправиться в Германию, изучить там производство серной кислоты и затем организовать его в Фалуне. Молодой инженер охотно принял предложение: поехал в Герц и за месяц командировки настолько хорошо изучил дело, что уже зимой 1872 года построил на Фалунском руднике первый в Швеции завод серной кислоты.

Два года Лаваль руководил этим предприятием, попутно изучая горнозаводское дело и внося в него одно улучшение за другим. Но так как он жаждал самостоятельной деятельности, то и стал искать себе дело, которое могло бы дать ему средства и независимость для выполнения своих замыслов, о которых он говорил:

— Я не могу ступить ни одного шага, чтобы не наткнуться на новую задачу, требующую решения. Я знаю, что могу их решить, у меня все есть для этого, кроме денег.

Действительно, развивавшаяся в то время шведская промышленность предъявляла технике множество требований, самых разнообразных, и дела было непочатый край. Лаваль начал с того, что предложил одному богатому человеку построить стекольный завод для производства бутылок по новому способу: бутылки должны были формоваться во вращающихся изложницах. Тот поддался убедительности доводов изобретателя, вошел с ним в соглашение и построил завод. Вращающиеся изложницы вполне себя оправдали. Завод изготовлял, однако, такую массу бутылок, в какой не нуждался не только Фалун, но и вся Швеция. Компаньоны завалили своими бутылками рынок, сбили на них цену и остались без покупателей. Завод должен был закрыться с убытком в сорок тысяч крон.

Замечательно, что все основные технические идеи Лаваля, соответствуя вполне его живой, деятельной, быстро переходящей от решения к выполнению натуре, неизменно исходили из принципа быстроходных машин. А в быстроходных машинах как раз в то время испытывало нужду капиталистическое хозяйство. Благодаря коренившейся в самой его природе живости и проворству Лаваль, вероятно, с особенной остротой чувствовал, что нельзя уже удовлетворяться тихоходными, прожорливыми, неповоротливыми машинами Уатта. Лаваль сказал себе однажды: «Большие скорости!» И потом уже всю жизнь он боролся за переход к большим скоростям, высоким давлениям, электрическому току.

Расставшись с компаньоном, Лаваль вынужден был снова искать службу. На этот раз уже получившему известность инженеру не пришлось долго искать работу. Владелец машиностроительного завода в Клостере Лагергрен предложил Лавалю заведовать у него конструкторским бюро.

Это было в самом конце 1875 года. Накануне Нового года, вечером, Лаваль приближался к месту назначения. Нужно было только перебраться через реку. Возчик советовал вернуться, так как не надеялся на прочность льда. Но Лаваль во что бы то ни стало решил провести новогоднюю ночь в тепле и уюте. Он велел ехать, и на самой середине реки сани провалились под лед. Лаваль, не раздумывая, выскочил и, очутившись по горло в воде, помог лошади, поддерживая сани, выбраться на лед. Живость и решительность на этот раз выручили из беды, но к Лагергрену он явился насквозь промерзший и мокрый.

Впрочем, ни ледяная ванна, ни призрак опасности, счастливо избегнутой, не отразились на хорошем настроении Лаваля. Ночью, отогревшийся и возбужденный выпитым вином, исполненный веселых надежд на будущее, он излагал Лагергрену свои планы. Делал он это с такой горячностью, что даже старый, опытный предприниматель, плененный убедительностью доводов, смелостью и ясным умом, должен был согласиться, что металлургическая промышленность Швеции вступит в новый период своего развития, как только все эти планы будут осуществлены.

— Мы их осуществим! — кричал Лаваль. — Я заставлю старушку Швецию двигаться быстрее! Мы обгоним и немцев, и американцев, и англичан! Они будут к нам ездить учиться, а не мы к ним…

Раскричавшийся доктор философии едва не свалил маленький столик с кофейным сервизом. Но Лаваль был поистине очарователен: высокий, крепкий и сильный, с черными тугими усами, с легкими волнистыми волосами, зачесанными назад, сверкающий стеклами очков и живыми черными глазами, он олицетворял собой решительность, страстную стремительность и непреоборимый оптимизм. Слушая его, Лагергрен только мог поздравить себя с новым работником.

Он не ошибся. За два года своего пребывания в Клостере Лаваль ввел множество улучшений в производственный процесс и положил начало своеобразному «шведскому способу бессемерования» — получению стали из жидкого чугуна — устройством сетчатого дна для бессемеровского конвертора. Вопрос о применении электрического тока в металлургии он поднял тогда, когда еще никто об этом не думал. Наконец, здесь же, в Клостере, к нему пришла идея первой его быстроходной машины — сепаратора, — работавшей с неслыханной для того времени скоростью.

К этому времени различными изобретателями было предложено несколько машин для отделения сливок от молока, действие которых основывалось на центробежной силе.

Прочтя случайно в газете сообщение о такой машине, построенной в Германии неким Лефельдтом, Лаваль увидел ее недостаток в том, что она делала всего только восемьсот пятьдесят оборотов в минуту, и, усовершенствовав конструкцию, довел ее скорость до семи тысяч оборотов в минуту. Он предложил Лефельдту купить его идею.

Лефельдт отказался, не считая предложение целесообразным. Тогда Лаваль взял патент на свое имя, оставил службу в Клостере и отправился в Стокгольм продавать изобретение. Лагергрену он бросил на прощание громкую фразу: «Вы еще обо мне услышите!»

Предсказание это сбылось, но не так скоро, как думал Лаваль. Понадобилось порядочно времени и очень много труда, прежде чем ему удалось построить сепаратор с непрерывным съемом сливок, который мог удовлетворить потребителей. Зато с этого момента маленькая машина получила огромное распространение и надолго обеспечила Лаваля паями акционерного общества «Сепаратор», организованного им в компании с друзьями. Дела общества развивались с таким успехом, что через несколько лет, устранившись от непосредственного участия в предприятии, Лаваль мог, не считаясь с расходами и не отказываясь от самых дорогих экспериментов, широко развернуть свою изобретательскую деятельность. Опираясь на солидную материальную базу, Лаваль взялся за разрешение основных задач техники капиталистического хозяйства.

Вращать сепаратор руками, как это Лаваль сам на себе испытал, демонстрируя свою машину первым покупателям, было дело нелегкое, быстро вгонявшее изобретателя в пот. Ставить для этих аппаратов на фермах огромные паровые машины было невыгодно. Да к тому же самые лучшие паровые машины не могли при своей тихоходности угнаться за скоростью сепаратора. Для привода требовались еще передачи, чтобы иметь нужное сепаратору число оборотов.

И вот Лаваль решил использовать для вращения сепаратора скорость пара.

Впоследствии, вспоминая о клостерском периоде своей жизни и преследовавших его в это время идеях, Лаваль писал в одной из своих записных книжек:

«Я был всецело проникнут истиной: большие скорости — вот истинный дар небес. Я уже в 1876 году мечтал об успешном использовании скорости пара, направленного непосредственно на колесо для получения механической работы. Это было смелое предприятие. В те времена употреблялись лишь тихоходные машины. Скорости, позднее достигнутые в сепараторе, в то время казались невероятными, а в наших учебниках писалось о паре: жаль, что плотность пара так мала, что не допускает даже мысли о применении его на колесе для создания энергии. И все-таки мне удалось осуществить мои смелые мечты».

Первые сепараторы Лаваля приводились в действие вручную.

Этот шведский инженер как будто был создан для того, чтобы выполнить новые задачи, поставленные промышленностью перед техникой.

А промышленность к концу прошлого века, полностью освоив машины, хотела заставить их работать как можно быстрее, производить как можно проворнее и больше нужных хозяйству вещей.

Древние машины приводились в действие мускульной силой людей и животных. Естественно, что они и работали медленно, малопродуктивно.

Первые механические двигатели, в том числе и паровые, заменяли живые двигатели. Ньюкомен создал водоотливную машину, поставив к старому насосу атмосферный двигатель вместо рабочего. Понятно, что такой двигатель и работал немногим скорее, чем рабочий, качавший воду тем же самым насосом.

Паровые двигатели обслуживали прядильные и ткацкие станки, лесопильные машины, мельничные жернова, работавшие также не очень быстро: конструкция их создавалась в эпоху мануфактуры, когда об универсальных двигателях не было и помину.

В эпоху промышленного капитализма с ростом производительных сил росли и потребности. Понадобились быстроходные машины и в производстве булавок и на орудийных заводах для обработки пушечных деталей. А быстроходные машины потребовали и соответствующей скорости двигателя.

К концу века появились центробежные насосы, центрифуги, сепараторы — машины, вращавшиеся с неслыханной скоростью. Кроме того, в мир вошла динамо-машина, производящая электрический ток. Оказалось, что генераторы переменного электрического тока работают нормально, делая три тысячи оборотов в минуту. Таким машинам нужны двигатели с равным числом оборотов, чтобы, не прибегая к передачам, соединять на одном валу двигатель и рабочую машину.

Паровой двигатель — очень тихоходная машина. При всем совершенстве техники скорость его едва-едва доходила до четырехсот оборотов в минуту. Легко видеть, как безнадежно отставал он по быстроходности хотя бы от динамо-машины. Двигатели внутреннего сгорания оказались более проворными. Однако и до сих пор даже в самых совершенных авиационных двигателях, в том числе и дизельных, число оборотов остается в пределах между одной и тремя тысячами в минуту. Надо думать, что добиться больших скоростей в двигателях с прямолинейновозвратным движением вообще невозможно без снижения срока их службы. А долговечность этих двигателей и так очень невелика.

Движение поршня в цилиндре происходит попеременно, взад и вперед, от одного крайнего положения до другого. При каждой перемене направления в конце хода, когда скорость меняет свое направление, обращаясь в нуль при мгновенной остановке поршня, величина ускорения будет наибольшей, а с ней вместе достигает максимума и сила инерции. Если число ходов поршня в минуту будет значительным — скажем, более трехсот, — то силы инерции достигнут очень больших величин. Действуя несколько сот раз в минуту вправо и влево поочередно, силы инерции расшатывают движущие части машины и даже ее раму. По мере износа и истирания частей в промежутках образуются зазоры. Истершаяся, расшатавшаяся машина становится ненадежной, небезопасной и выбрасывается в лом. Таким образом, наличие прямолинейновозвратного движения в машине обращается в неустранимое препятствие для ее быстроходности.

Самым простым и удобным движением является не прямолинейно-возвратное, а вращательное вокруг неподвижной оси, не изменяющей своего положения. При таком движении возможно достигнуть того, что вследствие самого движения не будет проявляться никаких вредных сил инерции. Нужно только самым точным образом уравновесить вращающиеся части, сбалансировать их, как выражаются техники. Ничтожное повышение веса в какой-нибудь части колеса при вращении его со скоростью нескольких десятков тысяч оборотов в минуту приведет к развитию таких сил инерции, что неточно сбалансированное колесо разлетится на куски.

Тихоходные двигатели с непосредственным вращательным движением были известны человечеству испокон веков. Подобными двигателями являются водяные и ветряные колеса.

Даровой энергией воды и ветра пользоваться, конечно, выгодно. Конструкция водяных и ветряных колес очень проста. Действующие модели их может построить каждый смышленый ребенок. Беда только в том, что работают эти двигатели не там, где нужно человеку, а там, где есть река; и не тогда, когда человеку нужно, а тогда, когда есть ветер.

Творческой фантазии человека не под силу найти средство, чтобы заставить ветер дуть на железное колесо с надлежащей силой и постоянством. Вид мельницы, окруженной заказчиками, стоящей неподвижно из-за безветрия, скорее внушает мысль об искусственном ветре. Таким искусственным ветром является струя водяного пара. Она извергается из котла даже при невысоком давлении с огромной скоростью. Уже при пяти атмосферах первоначального давления пар вытекает из сосуда, в котором он заключен, со скоростью 500 метров в секунду, в то время как скорость ветра даже при урагане не превышает 40 метров в секунду. Пар давлением в десять атмосфер направляется в конденсатор со скоростью, вдвое превышающей скорость пули, выпущенной из современной винтовки. Скорость перегретого пара еще значительнее.

Мысль об использовании кинетической энергии пара для получения вращательного движения возникла до того, как были накоплены теоретические знания о свойствах пара.

Любители техники строили такие машины в виде игрушек для собственного развлечения раньше того, как паром начали заниматься Папен, Севери, Ньюкомен, Ползунов, Уатт.

Уже в одном из древнейших трудов, затрагивающих вопросы механики, именно в труде Герона Александрийского — а он жил две тысячи лет назад, — описан прибор, называемый эолипилом. Он состоит из пустого шара с двумя трубками, загнутыми по направлению движения шара. Осью, на которой помещается шар, служат трубки, соединенные с котлом, где кипит вода. По этим осевым трубкам пар наполняет шар и, вытекая на воздух из загнутых трубок, приводит его во вращательное движение. Шар вращается благодаря действию реактивной силы выходящей струи пара. Это все та же реактивная сила, которая заставляла двигаться и повозку Ньюкомена, построенную им в подтверждение открытого закона — всякое действие равно противодействию и противоположно ему по направлению.

Давление пара в шаре уравновешивается стенками шара всюду, кроме отверстий трубок, через которые пар выходит наружу. Если бы отверстий не было, давление во все стороны было бы одинаково, и шар оставался бы неподвижным. Но давление на всю площадь шара изнутри, конечно, во много раз превышает давление на площадь отверстий, где оно не уравновешено. Избыток давления и заставляет шар вращаться.

Эолипил Герона представляет собой простейшую форму реактивной паровой турбины.

Другой прибор, в котором работа производилась за счет кинетической энергии пара, известен под названием машины Бранка. Она описана в труде Джованни Бранка, вышедшем в Риме в 1629 году. Машина Бранка состоит из парового котла, крышкой которому служит бюст человека с тонкой трубкой во рту. Вырывающийся из трубки пар направляется на лопатки горизонтального колеса с ячейками. Прямодействующая струя пара вращает это колесо со значительной скоростью.

Машина Бранка представляет собой простейший вид активной паровой турбины.

По этим двум старинным моделям изобретатели и техники, даже не имея никаких теоретических знаний, могли видеть, что скорость пара можно использовать для получения вращательного движения двояко: или действуя струей пара на колесо, или заставляя пар вытекать из колеса. Герои и Бранк не только указывали, каким путем можно обратить кинетическую энергию пара в механическую работу, но и предлагали опытные конструкции таких машин.

Тем не менее в продолжение многих лет машины Герона и Бранка оставались только моделями и игрушками. Вероятно, благодаря тому, что на эти модели все смотрели как на игрушки, и существовало мнение, упорное, хотя и неправильное, что скорость пара нельзя превратить в работу, нельзя получить на колесе сколько-нибудь прочное мощное движение.

Это, наверное, единственный случай в истории техники, когда отлично выполненные и хорошо действовавшие модели увели людей в сторону от правильного пути, а не привели к нему. Впрочем, виновато здесь не только влияние установившегося мнения, но и отсутствие теоретических познаний.

Большое значение могло иметь и другое обстоятельство. До поры до времени паровой двигатель удовлетворял промышленность, и никто не требовал лучшего. Но, как только пришло время и хозяйство стало ощущать нужду в быстроходном двигателе, взоры конструкторов обратились к старым двигателям с непосредственным вращательным движением, к моделям Герона и Бранка. Добавим, что к этому времени налицо были и научные знания о свойствах пара, и техническая возможность строить быстроходные машины.

Попыток создать турбину, главным образом реактивную, было немало, но турбостроение до Лаваля не могло справиться с огромными трудностями конструктивного характера. Трудности рождала как раз быстроходность этих машин.

Мысль об использовании скорости пара для получения вращательного движения с большим числом оборотов появилась у Лаваля действительно еще в 1876 году, во время его пребывания в Клостере. Как-то он производил опыты с пескоструйным аппаратом, из которого струя пара выбрасывала с большой силой измельченный песок. Аппарат употреблялся на заводе для очистки чугунных отливок. Лаваль надумал применить этот аппарат для бурения горных пород, придав выбрасываемой аппаратом струе вращательное движение. Он сделал винтообразный наконечник, который и насадил на трубку аппарата, выбрасывающую струю. К его великому удивлению, этот наконечник сам стал вращаться. Сначала Лаваль ничего не понял, проделал опыт несколько раз и вдруг догадался, что выходящая из насадки струя пара реактивной силой своей вращает его.

Тогда-то он и вспомнил о забытой всеми кинетической энергии пара и подумал о возможности использования скорости пара для создания быстроходных двигателей с вращательным движением.

Практически этой идеей он прежде всего воспользовался для того, чтобы вращать сепаратор.

В апреле 1883 года Лаваль взял патент на свою «турбину, работающую паром или водой», и вслед за тем построил турбинный сепаратор.

Турбина эта представляла собой S-образное колесо, состоящее из двух изогнутых труб. Колесо было насажено на ось сепаратора. Пар давлением до четырех атмосфер, вытекая из труб, реактивным действием струи вращал колесо.

Лаваль не придавал слишком большого значения этой своей работе и, демонстрируя турбинный сепаратор друзьям, сказал:

— Достоинство этой турбины — ее простота!

Но этого достоинства оказалось недостаточно для успеха. Турбина расходовала очень много пара.

Продолжая разрабатывать конструкцию турбины, Лаваль построил другое турбинное колесо. Оно состояло из прямых труб с конусообразными выходными насадками и с подводом пара через пустотелую ось. Но и с этим колесом сепараторы не имели практического успеха. Однако во время опытов с новым колесом молодой инженер сделал открытие, что конические насадки чрезвычайно повышают скорость пара. Благодаря разности давлений в начале и конце насадок потенциальная энергия пара вся сразу превращалась здесь в кинетическую энергию.

Воспользовавшись этим открытием, Лаваль решил построить активную турбину вроде машины Бранка, но пар направить на колесо из такой расширяющейся к концу трубки, получившей в технике название «сопло Лаваля».

Теперь уже речь шла не только о двигателе для сепаратора — Лаваль это отлично понимал. Перед ним стоял призрак нового универсального быстроходного двигателя, которого требовала прежде всего электротехника.

Материальные условия для развития деятельности Лаваля были в это время очень благоприятны. Человек скромных потребностей, интересовавшийся лишь тем, что имело непосредственное отношение к технике, он тратил все свои огромные средства только на оборудование мастерских и на производство опытов.

К моменту возникновения идеи турбины Лаваль имел прекрасную лабораторию и мастерские. У него работал штат инженеров и техников. Целый квартал между Пильгатаном и озером Мелар принадлежал Лавалю. Здесь находились мастерские и лаборатории, где производились самые разнообразные опыты и испытывались всевозможные модели, начиная от ветряных двигателей и кончая ацетиленовыми лампами.

Взяв в начале 1889 года патент на применение расширяющегося сопла к турбине, Лаваль перешел к решению всей проблемы. Этому предшествовали опыты в мастерских. Задача заключалась в том, чтобы превратить скорость пара в механическую работу колеса с одним рядом лопаток на нем.

Задача эта, легкая на первый взгляд, в действительности оказалась чрезвычайно трудной. Надо было обладать энергией, изобретательностью и смелостью Лаваля, чтобы преодолеть все трудности, стоявшие перед ним, несмотря на кажущуюся простоту и легкость конструкции. Технические трудности происходили из-за огромной скорости вращения колеса под действием струи пара: оно делало свыше тридцати тысяч оборотов в минуту. При такой скорости вращения колесо должно было быть не только очень прочным, но и математически точно уравновешенным во всех своих частях.

Возбужденный, небритый, нечесаный, питаясь одним черным кофе, Лаваль то просиживал целые ночи за письменным столом, то безвыходно, с медвежьим упрямством, трудился в мастерских. Иногда он бродил как помешанный, с пустыми глазами, по дому, снова садился за стол и считал и чертил, вновь пересчитывал и вновь перечерчивал.

Применять для турбинного колеса обыкновенный жесткий, мощный вал оказывалось невозможным: при опытах с такими валами машина начинала дрожать, вал изгибался, и немыслимо было добиться какой-нибудь надежности в работе. Опыты происходили в самых разнообразных условиях и не привели ни к чему. Надо было что-то изменить в самом корне, и Лаваль продолжал метаться по дому и мастерским в поисках выхода.

И, как это часто бывает в трудных положениях, выход был найден совсем не там, где искало его привычное мышление. Задача решалась не жесткостью, мощностью и прочностью системы, к чему стремился Лаваль сначала, а наоборот — ее чрезвычайной гибкостью и податливостью. Лаваль решил попробовать тонкий длинный, гибкий вал, так чтобы вся система при огромной скорости вращения уравновешивалась сама собой. Идея была очень смелой. Она противоречила привычному взгляду на вещи. Для людей, опиравшихся на грубый повседневный опыт, казалось бесплодным конструировать машину такого рода, и только уважение к изобретателю останавливало их от того, чтобы не сказать ему: «Ваши большие скорости неосуществимы, и надо все бросить, дорогой Густав! Существует критическая скорость в пять-шесть тысяч оборотов, за которой следует катастрофа».

Лаваль произвел предварительный опыт с камышовым стеблем, на который был насажен деревянный диск. Опыт принес Лавалю открытие. Стебель с диском стали вращать на станке, увеличивая скорость. Подходя к критической скорости, стебель дрожал, изгибался, вибрировал, но, к величайшему удивлению присутствующих, перейдя критическую скорость, камышовый вал перестал вибрировать, и вся система успокоилась. Испытанный вслед за тем деревянный негнущийся вал, дойдя до критической скорости, стал трещать и выбыл из строя.

Лаваль производит опыт с камышовым стеблем, на который насажен деревянный диск.

17 февраля 1889 года Лаваль отметил в своей записной книжке:

«Опыт с камышом удался».

Теперь, когда решена была труднейшая часть задачи, легче было решить и остальные ее части. Математика пригодилась изобретателю при расчете диска равного сопротивления для турбинного колеса. Как металлург он нашел специальные материалы для изготовления дисков и лопаток, а также и зубчатой передачи. Зубчатая передача снижала число оборотов турбинного колеса до нужного динамо-машине.

В 1890 году Лаваль выпустил на рынок свои первые турбины, соединенные с динамо-машинами. Широкая техническая общественность познакомилась с ними, однако, позднее — только в 1893 году, на Всемирной выставке в Чикаго. За это время Лаваль внес много усовершенствований в конструкцию и, в частности, взял патент на применение к паровой турбине конденсатора. В турбине, где возможно устроить широкое сообщение с конденсатором и не надо прибегать к клапанам, как в паровом двигателе, имеется возможность использовать очень глубокий вакуум. Применение конденсатора у турбины сразу же повысило коэффициент ее полезного действия.

Внеся все эти усовершенствования, Лаваль перешел к постройке более мощных турбин. Они стали применяться не только для вращения динамо-машин. Их использовали и как обычные двигатели.

Это были активные, одноступенчатые турбины. К турбинному колесу, сидящему на тонкой горизонтальной оси, пар подводился по нескольким, установленным под острым углом к плоскости колеса соплам с коническим расширением на конце. Число сопел зависело от мощности турбины и давления пара. Они прикреплялись к закрытой кольцеобразной трубе, присоединенной к главному паропроводу.

Колеса турбин состояли из двух крепких стальных дисков, между которыми были укреплены отдельные лопатки. Диаметр колеса в турбинах мощностью в 100 лошадиных сил не превышал полуметра. Турбинное колесо помещалось на тонком длинном валу. Так, у двадцатисильной турбины толщина вала равнялась всего только 12–13 миллиметрам. Этот гибкий вал при вращении сам по себе приходил в строго центральное положение, которое и удерживал при любой скорости. Чтобы вибрация системы при переходе через критическую скорость не привела к аварии, Лаваль окружил вал «ограничительными кольцами».

Число оборотов колеса достигало тринадцати тысяч в минуту. Посредством зубчатой передачи скорость уменьшалась в десять — тридцать раз на валу, который соединялся с рабочей машиной. Забавно, что размеры зубчатой передачи во много раз превышали размеры турбинного колеса и придавали турбине довольно странный вид.

Коэффициент полезного действия турбин Лаваля оказался очень значительным, и при высоких давлениях пара он еще более повышался. Простота конструкции турбин, их обслуживания и установки по сравнению с поршневыми паровыми машинами обеспечивала новому двигателю распространение.

Как только выяснились преимущества новых двигателей, к постройке турбин по лицензиям Лаваля приступили машиностроительные заводы Германии и Франции. В Стокгольме было организовано «Акционерное общество паровых турбин Лаваля», построившее большой турбостроительный завод.

Сам изобретатель немедленно перешел к опытам с паром очень высокого давления, явившимся продолжением его работ над повышением экономичности турбин. Эти эксперименты закончились появлением на Стокгольмской выставке 1897 года сконструированного Лавалем первого котла высокого давления пара с автоматическим регулированием.

Именно здесь более чем где-либо проявился во всем блеске гений шведского изобретателя. В своих идеях Лаваль шел впереди современников. Он предвидел пути развития техники на полвека вперед и угадывал их направление. Только в 20-х годах нашего века произошел повсеместно переворот в области техники паровых котлов, более решительный, чем все предыдущие, на основе выдвинутой Лавалем идеи применения высоких давлений пара.

Правда, и ранее находились смельчаки, пытавшиеся применять такой пар. Так, немецкий инженер Альбан еще в середине прошлого века сконструировал котел с давлением пара в сорок атмосфер. Но при практическом его выполнении он потерпел неудачу, и мысль о применении пара таких высоких давлений была оставлена надолго. Только в 1921 году появился работоспособный котел Шмидта с давлением пара в шестьдесят атмосфер.

Таким образом, у Лаваля, в сущности говоря, не было предшественников в этой области и, во всяком случае, не было накопленного технического опыта. Между тем Лаваль с присущей ему смелостью решил сразу перейти от применявшихся в его время на практике давлений в десять атмосфер к давлениям в сто десять и даже двести двадцать атмосфер, практически достигнутых лишь в настоящее время. Он сделал колоссальный скачок вперед, и сделал его в правильном направлении, как это показало дальнейшее развитие вопроса, стоящего и сегодня в центре внимания паровой техники.

Лавалевский паровой котел, выставленный в Стокгольме, вместе с обслуживавшимся им турбогенератором, дававшим ток для освещения выставки, представлял собой единственную в своем роде установку, являющуюся прототипом самых больших и экономичных современных установок.

Этот котел, высотой около трех метров, состоял из одной длинной спиральной трубки небольшого сечения, свернутой во множество витков, обогреваемых газами из топки. Вода накачивалась насосом с одного конца змеевика, а пар отбирался с другого его конца. Установка представляла собой органическое целое. Топливо и питательная вода подавались автоматически, так же автоматически регулировалось давление пара при входе в турбину. Давление пара в этом первом в мире прямоточном котле высокого давления держалось на уровне 120 атмосфер.

Турбина, выставленная в Стокгольме, отличалась от прежних турбин тем, что имела два ряда лопаток. Это был новый тип турбины, с двумя ступенями скорости. Отработавший в первом ряду лопаток пар направлялся на второй, сидящий на том же диске. Таким образом, его энергия использовалась на двух рядах лопаток, благодаря чему вдвое уменьшалась скорость колеса. Ступени скорости позволили снизить в самой турбине число оборотов до тринадцати тысяч в минуту. Турбина вращала динамо-машину и приводила в действие автоматические устройства котла. Отработавший в турбине пар шел в конденсатор. Вся установка занимала площадь в 20 квадратных метров и отличалась компактностью, изяществом и простотой.

Котел работал, к полному удовольствию устроителей, но по ночам Лавалю частенько приходилось возиться с починкой змеевика, который не выдерживал длительной эксплуатации из-за несовершенства примененного материала. Лаваль понимал, конечно, что для практического успеха котла понадобится еще немало времени, труда, опытов и терпения, но заниматься им он уже больше не мог.

Этот человек, очень мало заботившийся о своем деловом достоинстве, без сомнений и колебаний отдававшийся во власть бесчисленного множества охватывавших его идей, предоставлял другим доделывать то, что он начинал. Сам он спешил идти дальше, к разрешению новых задач.

Живая фантазия изобретателя охватывала все области техники и науки. В различные периоды своей жизни он интересовался самолетами и извлечением золота из морской воды, сепарированием газов и ферросплавами; он конструировал доильные машины и электрические печи для выплавки чугуна, построил воздухообволакиваемое судно и установку для обезвоживания торфа. Он занимался, множеством других вещей, о чем говорят заметки в его записных книжках и сломанные модели в пыльных складах мастерских на Пильгатане. Но ни одно из его предприятий не было, в сущности, доведено до окончательного практического успеха.

Этот год от году толстевший добродушный, веселый, проворный человек, теперь внешне походивший на пастора, при всех достоинствах имел в глазах предпринимателей один поистине все убивающий недостаток: он совершенно не умел устраивать свои материальные дела и все чаще и чаще стоял на краю банкротства.

Когда ему советовали сократить расходы на опыты, он резко отвечал:

— Мои эксперименты стоят тех средств, которые я на них трачу!

На эту самоуверенность Лаваль, конечно, имел право. Турбина Лаваля, правда, оказалась сама по себе неспособной к дальнейшему развитию и скоро была вытеснена из крупной промышленности турбинами других систем. Но только благодаря практическому разрешению Лавалем основных вопросов турбостроения оно достигло теперь своего блестящего развития. Десятки ученых разрабатывали в технической литературе вопросы о расширяющемся сопле Лаваля, о гибкой оси его турбин, о форме дисков. Эти исследования повели к созданию метода расчетов отдельных частей турбин и положили начало созданию теории паровой турбины.

Такое же следствие имели другие работы Лаваля как в области паровой техники, так и в области электрометаллургии. Но беспрерывно возникавшие для эксплуатации новых изобретений Лаваля акционерные общества неизменно лопались, а сам Лаваль получил репутацию дельца, на ранней поре своей жизни имевшего однажды случайный успех, развитый его компаньонами, а затем обнаружившего всю свою несостоятельность.

В то время как Лаваль, вспоминая свою молодость, снова рассчитывал, можно ли ему взять извозчика или придется идти пешком, выросшее из организованного им товарищества акционерное общество «Сепаратор» скупало за бесценок развалины заводов «Лактатор», производивших доильные машины Лаваля, и начинало производство собственных доильных машин.

В то время как Лаваль закрывал свои мастерские и распускал штат инженеров, «Акционерное общество паровых турбин Лаваля», выросшее из собственного турбостроительного завода Лаваля, переходило на строительство многоступенчатых турбин и распространяло свою деятельность на всю Европу.

На базе акционерного общества «Электросила Трольхеттан», организованного Лавалем для эксплуатации водопровода, решением королевского суда отнятого у общества, выросла правительственная гидростанция, являющаяся крупнейшей теперь в Швеции.

Даже капиталистические дельцы и воротилы, руководившие обществами, выросшими из лавалевских предприятий, были смущены тем, что ко дню двадцатипятилетнего существования «Сепаратора» у Лаваля не оказалось ни одной акции общества. А при основании его он имел половину всех паев. Этот случай ярко и отчетливо характеризует положение изобретателя в том самом капиталистическом хозяйстве, которое эксплуатировало его гений. Правление «Сепаратора» назначило Лавалю пожизненную пенсию, но пенсия не могла уже устроить его дел, обеспечить существование лабораторий и мастерских, производство экспериментов.

К тому же, хотя беспокойное воображение Лаваля по-прежнему перерабатывало тысячи разнообразных идей, физические силы оставляли изобретателя и приступы усталости охватывали его все чаще и чаще.

Дело заключалось не только в переутомлении и приближающейся старости, не только в неудачах последних лет и материальных затруднениях: Лаваль был тяжело болен, сам того не замечая.

За всю свою жизнь он, кажется, всего только однажды имел дело с врачами, после того как во время аварии сепаратора его с окровавленной рукой отправили в больницу. От природы наделенный прекрасным здоровьем, закаленный в суровой Далекарлии, много времени уделявший лыжному спорту, Лаваль и не нуждался в медиках. Ему, пожалуй, никогда и в голову не приходило, что он может стать жертвой какой-нибудь жестокой болезни. Он долго высмеивал советы жены обратиться к врачам по поводу своего странного состояния.

— Если бы они могли прописать мне вместо порошков и пилюль сто тысяч крон, — говорил он, — то я, наверное, почувствовал бы себя лучше. Микстура же мне никак не может помочь.

Однако в конце концов врачи явились, обследовали больного и определили у него наличие раковой опухоли в кишечнике. Диагноз произвел ошеломляющее впечатление на окружающих, но не на больного. Смеясь над грустным заключением врачей и над испугом жены, Лаваль в январе 1913 года уехал в Англию. Он повез туда свою последнюю работу: модель новой доильной машины, представлявшей собой остроумный, удобный аппарат, который быстро и легко раскрывался, устанавливался и затем так же легко складывался после работы. На родине эта машина не вызывала ни у кого доверия, так как самая идея ее уже была скомпрометирована прежней неудачей Лаваля.

В это время предвоенный хозяйственный подъем мирового капиталистического хозяйства давал возможность капиталистам вкладывать в промышленность огромные средства, но Лаваль уже не мог использовать благоприятное положение. Невероятные физические страдания заставили его вернуться домой.

На этот раз он сам уже обратился за помощью к медикам и согласился на операцию. Его немедленно перевезли в больницу. Через два дня, измученный болью и призраком смерти, он лег на операционный стол. Питавший всегда отвращение ко всяким наркотикам, теперь он с удовольствием вдыхал сладкий запах хлороформа, избавлявший его от страданий и мучительных мыслей.

Операцию сделали, но без всякой надежды на успех.

Лежа на белой холодной койке под пустым потолком, Лаваль понял, что жизнь окончена. Когда Тюко Робсам, старый сотрудник и друг, навестил его в пустынной, тихой больничной палате, Лаваль, пожимая ему руку, сказал с горечью:

— Было бы все-таки трагично, если бы я умер именно теперь, когда у меня все готово, все ясно и успех обезвоживания торфа обеспечен…

Светлая вера в свой гений осталась в нем непоколебленной до последней минуты сознания. Ночью 2 февраля 1913 года Лаваль умер.

Появившиеся во множестве некрологи, статьи и воспоминания были попытками наскоро оценить заслуги Лаваля как изобретателя и инженера, как вдохновителя шведской промышленности в период ее расцвета. Однако никто еще не дал полной истории жизни и деятельности этого изумительного мастера техники.

Тень практических неудач, решающих в капиталистическом обществе судьбу человека, застилает от его соотечественников величественные черты гения, сквозившие в каждой работе Лаваля.

Совершенно другую судьбу имел создатель реактивной турбины Чарлз Парсонс.