Лобачевский Николай Иванович

Лобачевский Николай Иванович

1792–1856

Русский математик, совершивший переворот в представлении о природе пространства.

Николай Лобачевский родился 1 декабря 1792 года в небогатой семье мелкого служащего в Нижнем Новгороде. После смерти отца вместе с матерью и братьями переехал в Казань. В 1802 году он поступил в гимназию, ему тогда исполнилось десять лет. Его успехи в математике и в древних языках были феноменальны. В 14 лет он был подготовлен для университета. В 1807 году Лобачевский поступил в Казанский университет.

В 1811 году, в возрасте 18 лет, Лобачевский получил степень магистра, к тому же с отличием. В это же время его старший брат Алексей вел курсы элементарной математики по подготовке младших правительственных чиновников, и, когда он получил отпуск по болезни, Николай заменил его. В апреле 1814 года он был утвержден адъюнктом чистой математики, а 2 года спустя ему было присвоено звание профессора.

Назначение Лобачевского экстраординарным профессором состоялось в 1816 году в необычно молодом возрасте 23 лет. Его обязанности требовали больших трудов. Дополнительно к работе по математике ему поручались лекционные курсы по астрономии и физике. Он блестяще справился с порученным заданием. Это послужило поводом для еще большей нагрузки.

Почти вся жизнь Лобачевского связана с этим университетом. По окончании университета в 1811 году он стал математиком, в 1814 — адъюнктом, в 1816 — экстраординарным и в 1822 — ординарным профессором. Дважды он был деканом физико-математического факультета, а с 1827 по 1846 год — ректором Казанского университета.

В Казанском университете Лобачевский, наряду с математическими дисциплинами, читал лекции по астрономии, расширяя и углубляя их содержание. Вместе со своим учеником М. В. Ляпуновым он участвовал в экспедиции в Пензу для наблюдения полного солнечного затмения в июле 1842 года. Проводил астрономические наблюдения, а также занимался усовершенствованием методов их обработки.

В 1825 году Николай Лобачевский был избран библиотекарем университета и оставался на этом посту до 1835 года, совмещая обязанности библиотекаря с обязанностями ректора. На этом посту он вёл напряжённую научную и педагогическую работу.

Нуждаясь в политической и моральной поддержке своей деятельности университете, специальный уполномоченный от правительства попечитель обеспечил назначение в 1827 году Лобачевского ректором. Математик был теперь главой университета, но эта должность отнюдь не была синекурой. Под его умелым руководством весь штат был реорганизован, были привлечены лучшие люди, преподавание было либерализовано, несмотря на официальные препятствия, была построена библиотека, соответствующая высшему уровню научных требований, были организованы механические мастерские для изготовления научных инструментов, которые требовались для исследований и преподавания, была основана и оборудована обсерватория — любимое детище энергичного ректора.

Лобачевский был хранителем музея и библиотекарем университета. Даже ректорское достоинство не удерживало его от работы руками в библиотеке и музее, когда он чувствовал, что его помощь необходима. Университет был его жизнью, и он любил его.

По инициативе Лобачевского в 1834 году начали издаваться «Ученые записки Казанского университета». Также при университете в 1833–1837 годы была построена новая обсерватория, одна из лучших в то время, которая начала работать в 1838 году, на год раньше известной Пулковской.

Активная деятельность Лобачевского была пресечена в 1846 году. Министерство просвещения отклонило ходатайство ученого совета университета об оставлении Лобачевского на кафедре и на посту ректора.

Величайшим научным подвигом Николая Лобачевского является создание им первой неевклидовой геометрии, историю которой принято отсчитывать от заседания Отделения физико-математических наук в Казанском университете 11 февраля 1826 года. Тогда Лобачевский выступил с докладом «Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных». В протоколе заседания об этом великом событии следующая запись: «Слушано было представление Г. Орд. профессора Лобачевского от 6 февраля сего года с приложением своего сочинения на французском, о котором он желает знать мнение членов Отделения и, ежели оно будет выгодно, то просит сочинение принять в составление ученых записок Физико-математического факультета».

В 1835 году Николай Лобачевский кратко сформулировал побудительные мотивы, которые привели его к открытию неевклидовой геометрии: «Напрасное старание со времен Евклида в продолжении двух тысяч лет заставило меня подозревать, что в самих понятиях еще не заключается той истины, которую хотели доказать и которую проверить, подобно другим физическим законам, могут лишь опыты, каковы, например, астрономические наблюдения. В справедливости моей догадки будучи наконец убежден и почитая затруднительный вопрос решенным вполне, писал об этом я рассуждение в 1826 году».

Ни комиссия в составе профессоров И.М. Симонова, А.Я. Купфера и адъюнкта Н.Д. Брашмана, назначенная для рассмотрения «Сжатого изложения», ни другие современники Лобачевского, в том числе выдающийся математик М.В. Остроградский, не смогли по достоинству оценить открытие Лобачевского. Признание пришло лишь через 12 лет после его кончины, когда в 1868 году Э. Бельтрами показал, что геометрия Лобаческого может быть реализована на псевдосферических поверхностях в евклидовом пространстве, если за прямые принять геодезические. К неевклидовой геометрии пришел также Янош Бойяи, но в менее полной форме и на 3 года позже в 1832 году.

Открытие Лобачевского не получило признания современников, но впоследствии совершило переворот в представлении о природе пространства. Европейские учёные узнали о работах Лобачевского лишь в 1840 году. В 1842 году он был избран членом-корреспондентом Гёттингенского королевского научного общества как «один из превосходнейших математиков русского государства». «Властитель дум» передовой интеллигенции — Н.Г. Чернышевский иронизировал в письме к сыновьям: «Что такое «кривизна луча» или «кривое пространство»? Что такое геометрия без аксиомы параллельных?»

С конца XVIII века начались попытки создания геометрии, отличной от геометрии, описанной в «Началах» Евклида. Причиной тому стали противоречия, возникающие в Евклидовой геометрии, в частности знаменитая проблема пятого постулата. Следствием этого постулата является понятие параллельных прямых, не пересекающихся на всем их протяжении. Само по себе это утверждение не представляет собой чего-то необычного или странного, но в нем есть один изъян — доказать его с помощью математического аппарата просто-напросто невозможно. И именно это обстоятельство толкнуло ученых на создание неевклидовой геометрии, в которой данный недостаток был бы устранен.

Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В геометрии Лобачевского вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит привычным представлениям. Тем не менее как эта аксиома, так и вся геометрия Лобачевского имеет вполне реальный смысл.

Источником геометрии Лобачевского послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида. Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов. Этот постулат представляет собой одну из аксиом, положенных Евклидом в основу изложения геометрии.

Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе других посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий.

Лобачевский исходил из допущения, согласно которому через точку, лежащую вне данной прямой, проходит несколько прямых, не пересекающихся с данной прямой. Развивая следствия, проистекающие из этого допущения, которое противоречит знаменитому евклидовскому V постулату, Лобачевский не убоялся сделать дерзкий шаг, перед которым из опасения противоречий останавливались его предшественники: построить геометрию, противоречащую повседневному опыту и «здравому смыслу» — квинтэссенции повседневного опыта.

Пятый постулат геометрии Лобачевского утверждает, что если на плоскости лежат прямая и точка, то через эту точку можно провести хотя бы две прямые, не пересекающиеся с первой прямой. А в геометрии Евклида через точку можно провести только одну единственную прямую. Таким образом, неевклидова геометрия допускает, что на одной плоскости может находиться сразу несколько прямых линий, не пересекающихся друг с другом.

А утверждение о возможности пересечения параллельных прямых в геометрии Лобачевского возникло из-за простого незнания аксиом этой геометрии. Ведь при ближайшем рассмотрении оказывается, что в неевклидовой геометрии не только не говорится о пересечении параллельных прямых, но и не говорится о параллельных прямых вообще — разговор здесь идет именно о непересекающихся прямых, находящихся на одной плоскости.

Чтобы понять это, необходимо сделать одно очень важное уточнение: геометрия Лобачевского описывает не плоское пространство, как это делает геометрия Евклида, а оперирует понятиями гиперболического пространства. В геометрии Лобачевского пространство не плоско, оно имеет некоторую отрицательную кривизну. Представить это достаточно сложно, но хорошей моделью такого пространства являются геометрические тела, похожие на воронку и седло. И все сказанное выше относится именно к поверхностям этих фигур.

Николаю Ивановичу принадлежит ряд фундаментальных работ в области алгебры («Алгебра или вычисление конечных», 1834 год) и математического анализа («Об исчезновении тригонометрических строк», 1834 год, «О сходимости бесконечных рядов». 1841 год, «О значении некоторых определённых интегралов», 1852 год). В области анализа Лобачевский получил новые результаты в теории тригонометрических рядов. Им же установлен один из наиболее удобных методов приближённого решения уравнений (метод Лобачевского).

Открытие Лобачевского поставило перед наукой по крайней мере два принципиально важных вопроса, не поднимавшихся со времен «Начал» Евклида: «Что такое геометрия вообще? Какая геометрия описывает геометрию реального мира?» До появления геометрии Лобаческого существовала только одна геометрия — евклидова, и, соответственно, только она могла рассматриваться как описание геометрии реального мира. Ответы на оба вопроса дало последующее развитие науки: в 1872 году Феликс Клейн определил геометрию как науку об инвариантах той или иной группы преобразований (различным геометриям соответствуют различные группы движений, то есть преобразований, при которых сохраняются расстояния между любыми двумя точками; геометрия Лобачевского изучает инварианты группы Лоренца, а прецизионные геодезические измерения показали, что на участках поверхности Земли, которые с достаточной точностью можно считать плоскими, выполняется геометрия Евклида). Что же касается геометрии Лобачевского, то она действует в пространстве релятивистских (близких к скорости света) скоростей. Лобачевский вошел в историю математики не только как гениальный геометр, но и как автор фундаментальных работ в области алгебры, теории бесконечных рядов и приближенного решения уравнений.

Историческое значение открытий математика состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще.

Вначале геометрия Лобачевского считалась непригодной к практическому применению, так как пространство, в котором мы живем, не соответствует пространству, описываемому этой геометрией. Однако законы, выведенные Лобачевским, вскоре нашли практическое применение — стало возможным решение ряда практических задач, практически не решаемых с помощью традиционных средств. На сегодняшний момент исследователи все чаще приходят к выводу, что пространство, в котором мы живем, может обладать отрицательной кривизной, наилучшим образом описываемой именно геометрией Лобачевского.

Данный текст является ознакомительным фрагментом.