Поиск новых путей развития самолетов

We use cookies. Read the Privacy and Cookie Policy

Поиск новых путей развития самолетов

Как уже отмечалось, обстановка после первой мировой войны не способствовала развитию технического прогресса в авиастроении. В условиях перепроизводства самолетов и отсутствия гарантированных заказов конструкторы, в основном, шли по пути мелких усовершенствований существующих образцов и приспособления военных летательных аппаратов для мирных целей. Однако в середине 20-х годов запасы авиационной техники были исчерпаны (в основном, за счет продажи ее государствам, в которых отсутствовала собственная авиапромышленность), самолеты все активнее стали применяться для коммерческих и научных целей, возникла необходимость замены устаревших образцов стоящих на вооружении самолетов. Все это способствовало активизации поиска новых путей развития авиации. В 20-е годы начались работы по созданию самолетов типа «летающее крыло», развивалась идея безаэродромной авиации, были начаты попытки замены бензинового двигателя внутреннего сгорания другими типами авиационных силовых установок.

Идея самолета со специально спрофилированным фюзеляжем, который является как бы частью крыла и участвует в образовании подъемной силы, зародилась еще на заре развития авиации. В 1910 г. Г. Юнкерс разработал проект самолета, в котором пассажиры, двигатели и груз размешались внутри крыла толстого профиля [14, с. 231–232]. Это должно было способствовать повышению аэродинамического качества самолетов и уменьшаю вес конструкции, т. к. расположенные в крыле грузы частично компенсировали нагрузки от действия подъемной силы.

С увеличением размеров самолетов и распространением в авиации толстого монопланного крыла идея «крыла-фюзеляжа» начата принимать реальные очертания. В 1924 г. американский авиаконструктор В. Бурнелли построил двухмоторный металлический биплан BR-2 с широким фюзеляжем, имеющим в сечении форму крыльевого профиля (рис. 1.85). Размеры пола грузовой кабины составляли 4.27x4,57 м. высота — 1.98 м. Самолет имел взлетный вес 7500 кг и мог развивать скорость 164 км/ч [16, с. 257b]. Впоследствии Бурнелли выпустил еше несколько однотипных самолетов, на этот раз с монопланным крылом. Его примеру последовала французская фирма Диль и Баклан, создавшая на рубеже 20-х — 30-х годов в качестве эксперимента два пассажирских бесфюзеляжных самолета: DB-70 и DB-71. Напомню, что центральная часть крыла использовалась для размещения пассажиров на самолетах-гигантах Юнкерс G-38 и АНТ-20 «Максим Горький». Однако дальше всех пошел конструктор К. А. Калинин, полностью устранивший фюзеляж на своем семимоторном самолете К-7.

Рис 1.85. Бурнелли BR-2

Рис 1.86. Схема самолета К-7

Объясняя свой выбор, конструктор в 1934 г. писал: «При создании новых больших машин новые пути ведут в сторону новых схем самолетов, в сторону использования крыла для размещения грузов. Это значит, что пути ведут к „летающему крылу“, которое и есть идеальный самолет. Чтобы совершить переход к „летающему крылу“, возникла необходимость построить машину по принципу „все в крыле“ [57, с. 203].

Центроплан крыла размахом 53 м имел гипертрофированно толстый профиль (с=33 %). Благодаря этому высота центроплана составляла 2,33 м, что позволяло свободно перемещаться внутри крыла. Общая площадь „жилого отсека“ в центроплана была 6x10.6 м (рис. 1.86). В пассажирском варианте самолета там могли находиться пассажиры (до 128 человек), в военном варианте — бомбы. К-7 разбился 21 ноября 1933 г. во время испытаний на максимальную скорость из-за разрушения одной из балок, несущих хвостовое оперение [57].

Очередным логическим шагом к созданию „идеального самолета“ должно было стать появление „летающего крыла“ — самолета, не имеющего ни фюзеляжа, ни хвостового оперения, ни других частей, создающих „вредное“ (т. е. не связанное с образованием подъемной силы) аэродинамическое сопротивление.

Первым за воплощение идеи самолета типа „летающее крыло“ взялся советский авиаконструктор и планерист Б. И. Черановский. В 1926 г. он построил легкий экспериментальный самолет-„бесхвостку“ БИЧ-3 с крылом параболической формы (рис. 1.87). Благодаря большой относительной толщине профиля и значительной длине корневой хорды, двигатель и кабина летчика почти не выступали за обводы крыла. Чтобы максимально уменьшить аэродинамическое сопротивление, было применено одноколесное шасси. Устойчивость и управление должны были обеспечиваться элевонами на задней кромке крыла и расположенным за кабиной килем с рулем направления. По отзывам летчика Б. Н. Кудрина, испытывавшего этот необычный самолет, БИЧ-3 хорошо слушался рулей, обладал удовлетворительной устойчивостью [58]. Однако ненадежная работа мотора и трудности при разбеге из-за одноколесного шасси не позволили закончить испытания.

После успешных полетов экспериментального БИЧ-7А с более мощным двигателем и обычным двухколесным шасси (1932 г.) Черановский решил применить схему летающее крыло» при создании пассажирского самолета. БИЧ-14 имел полуутопленную в крыле пятиместную закрытую кабину, два двигателя по 100 л.с. были расположены на передней кромке крыла. В отличие от первых экспериментальных образцов, этот самолет оказался неустойчивым и плохо управляемым, что не позволило применить его для пассажирских перевозок [56, с. 53–54]. Указанные недостатки во многом были вызваны тем, что, в отличие от БИЧ-3 и БИЧ-7А, на БИЧ-14 вертикальное оперение стояло между моторами и не обдуваюсь струей от винта. Из-за небольшого расстояния от центра тяжести самолета его эффективность была недостаточной.

Приверженцем идеи «летающего крыла» был также немецкий авиаконструктор У. Липпиш. В 1931 г. он построил экспериментальный бесхвостый самолет «Дельта-1» с крылом большой относительной толщины, со стреловидной передней и прямой задней кромкой. Самолет имел расположенный за кабиной двигатель с толкающим репеллером, вертикальные кили были установлены на концах крыла (рис. 1.88). Продольной устойчивости должен был способствовать, так называемый, самоустойчивый профиль крыла: благодаря отогнутой вверх хвостовой части профиля центр давления смешатся таким образом, что при увеличении угла атаки возникал пикируюший момент, стремящийся возвратить самолет в исходное положение. На задней кромке размешались элероны и рули высоты.

Рис. 1.87. БИЧ 3

На «Дельта-1» был осуществлен успешный демонстрационный перелет по Германии, который породил интерес к новой схеме у конструкторов многих стран.

Несмотря на то, что некоторые из первых экспериментальных аппаратов схемы «летающее крыло» продемонстрировали при испытаниях удовлетворительные летные качества, заметных преимуществ перед обычными самолетами они не проявили. При одинаковых весе и мощности максимальная скорость «бесхвосток была не больше, чем у самолетов классической схемы. Не оказалось преимуществ и в отношении дальности и грузоподъемности. Это свидетельствует о том. что аэродинамическое совершенство „летающих крыльев“ 20-х — начала 30-х годов было не выше, чем у обычных самолетов. Небольшие размеры самолетов заставляли конструкторов увеличивать толщину крыла, чтобы разместить внутри пилота и агрегаты, а это вело к росту профильного сопротивления. Кроме того, для „бесхвосток“ было характерно крыло со стреловидностью по передней кромке и большой корневой хордой, имеющее сравнительно небольшое удлинение.

Рис. 1.88. Дельта — Г

Таблица 1.11. Характеристики первых самолетов типа „летающее крыло“.

В отличие от других типов летательных аппаратов — дирижабля, вертолета, для взлета самолета требуется разбег по земле. Приземление также происходит с пробегом. В зависимости от веса и нагрузки на крыло взлетно-посадочная дистанция самолетов составляла от нескольких десятков до нескольких сотен метров. Если в случае вынужденной посадки летчику не удавалось найти подходящей площадки на земле, приземление заканчивалось аварией. Немалые трудности представлял и взлет после вынужденной посадки, даже если последняя прошла успешно.

Указанные особенности обусловили работы по созданию самолетов, которые могли бы взлетать и садиться без разбега. Первые проекты самолетов вертикального взлета и посадки (СВВП) относятся к XIX веку [14. с. 58]. В 20-е — начале 30-х годов появились новые проекты: с поворотными винтами (В. Маргулис. Франция), с поворотным крылом, с останавливаемым и превращаемым в крыло несущим винтом (Г. Геррик, США). В СССР в 30-е годы изучением возможности создания самолета вертикального взлета и посадки занимался Б. Н. Юрьев. В отличие от зарубежных изобретателей. Юрьев выступал за постройку СВВП с вертикальным положением фюзеляжа при взлете [59, с. 8–9].

Воплощению всех этих замыслов препятствовала недостаточная энерговооруженность самолетов: для вертикального взлета требовалась удельная нагрузка на мощность 1.4–1.7 кг/л.с. [59, с. 10]. что примерно вдвое больше реально достижимых в рассматриваемый период величин.

После первой мировой войны возобновились работы по вертолетам. История этих летательных аппаратов выходит за рамки книги, поэтому скажу лишь, что к началу 30-х годов вертолет по-прежнему оставался экспериментальным аппаратом. Из-за неудовлетворительной устойчивости и управляемости, небольшой грузоподъемности и малого ресурса агрегатов силовой установки он был неприемлем для решения практических задач.

Некоторый успех был достигнут лишь на пути создания автожиров — летательных аппаратов, представляющих собой комбинацию самолета и вертолета. Автожир имеет крыло и фюзеляж, как у самолета и горизонтальный винт, как у вертолета, однако в полете винт не связан с двигателем и вращается под действием набегающего потока воздуха, создавая значительную дополнительную подъемную силу. Хотя автожир и требовал разбега и пробега при взлете и посадке. благодаря искусственной раскрутке горизонтального винта перед стартом дистанция разбега была намного короче, чем у самолета. Кроме того, при остановке мотора в полете авторотирующий несущий винт уменьшал скорость снижения, т. е. играл роль своеобразного парашюта. Это повышало безопасность при приземлении. Недостатками автожира по сравнению с самолетом был больший вес конструкции и большее аэродинамическое сопротивление в полете.

Первые успешные автожиры были построены в 1923–1924 гг. испанским авиаконструктором X. де ля Сьерва [60]. В связи с популярностью идеи безопасного „самолета для каждого“ автожир сразу же привлек к себе интерес. К 1933 г. в мире было построено уже более 130 аппаратов этого типа. Некоторые из автожиров производились серийно. В 1934 г. в Москве, в ЦАГИ был создан автожир А-7, на котором впервые в мире установили стрелковое вооружение. В 1941 г. пять автожиров этого типа даже принимали участие в боевых действиях, правда без большого успеха.

Автожир имел короткую жизнь. Конструкторы вертолетов, используя опыт строительства автожиров, в частности конструкцию втулки несущего винта, создали во второй половине 30-х годов экспериментальные образцы вертолетов, которые по своим летным возможностям превосходили автожиры. По сравнению с последним. вертолет мог неподвижно висеть в воздухе, был способен к взлету и посадке без разбега и пробе га. В годы второй мировой войны вертолет полностью вытеснил автожир.

Рис. 1 89. Автожир

Как уже отмечалось, в 20-е годы удалось достигнуть заметного прогресса и развитии авиационных двигателей внутреннего сгорания. За 10 послевоенных лег удельный вес авиамоторов снизился в среднем на одну треть, вдвое возросла мощность, повысилась надежность. Тем не менее, ученые и изобретатели вели поиск новых, более совершенных типов силовых установок для самолетов.

Одним из недостатков, присущих двигателю внутреннего сгорания, было падение мощности с увеличением высоты полета (рис. 1.90». Разряженная атмосфера не обеспечивала карбюратор тем количеством воздуха, которое необходимо для нормального горения смеси, двигатель как бы задыхался. Это делало невозможным полеты на больших высотах, заманчивых тем, что плотность воздуха, а следовательно и аэродинамическое сопротивление, там намного меньше, чем у земли.

Для повышения мощности двигателя на высоте были созданы специальные «переразмеренные» моторы. Конструкторы шли на преднамеренное завышение объема или степени сжатия двигателя. Так как при работе у земли на полной мощности двигатель быстро бы вышел из строя (обычно фирмы гарантировали возможность не более пятиминутной работы у земли при полном открытии дросселя [22, с. 163]), «полный газ» давался на высоте, при этом конструктивно предусмотренный запас мощности компенсировал потери из-за уменьшения плотности воздуха. Примером «переразмеренного» авиадвигателя 20-х годов является немецкий BMW-6 или его советским лицензионный аналог М-17, имеющий на номинальном (рассчитанном на продолжительную работу) режиме мощность 500 л.с., а на форсированном (взлетном) режиме — 680 л.с. Недостатком этого способа было увеличение веса двигателя по сравнению с обычным двигателем той же номинальной мощности. Так, удельный вес М-17 был 1,08 кг/л.с. — больше, чем у созданного почти на десять лет раньше обычного двигателя «Либерти» [9, с. 71].

Указанная проблема возродила интерес к весьма популярной в XIX веке идее самолета с ракетным двигателем. Как известно, в отличие от обычного мотора, тяга реактивного двигателя не зависит от высоты полета. Кроме того, отношение тяги к весу у ракетного двигателя намного больше, чем у винтомоторной силовой установки.

Рис. 1.90 Изменение мощности двигателя при увеличении высоты полета

Первые практические шаги в этой области были сделаны в Германии в конце 20-х годов. Группа энтузиастов реактивного полета — М. Вальс. Ф. фон Опель. Ф. Зандер и А. Липпиш решили установить пороховой ракетный двигатель на планере. Такой вид летательного аппарата получил впоследствии название «ракетоплан».

Так как ракетный двигатель нужно было разместить так. чтобы не нарушилась центровка аппарата, была выбрана схема «утка». В задней части фюзеляжа установили две пороховые ракеты конструкции Зандера, которые должны были, рабатывать последовательно, одна за другой. 11 июня 1928 г. летчик Ф. Штамер совершил 4 полета на ракетоплане, дальность третьего, самого удачного полета составила около полутора километров. Четвертое испытание едва не закончилось катастрофой. Через две секунды посте запуска двигателя произошел взрыв, и планер загорелся. За счет быстрого снижения Штамеру удалось сбить пламя и благополучно приземлиться. Однако в момент посадки провода электрического запала, изоляция которых сгорела, замкнулись, и воспламенился заряд второй пороховой ракеты. К счастью, пожар удалось быстро потушить и пилот не пострадал [61].

В 1929 г. испытания были продолжены. 30 сентября фон Опель на новом летательном аппарате, на этот раз с хвостовым оперением, установленном на балках за крылом, и снабженном целой батареей из 16 пороховых ракет, совершил 10-минутный полет, во время которого скорость достигала 160 км/ч (рис. 1.91). В конце 20-х — начале 30-х годов опыты по применению ракетных двигателей на планерах проводили также Рааб-Катценштейн, Хети и Эспенлауб в Германии. Катаньо в Италии, Сван в США. Постройкой ракетоплана занималась группа студентов-энтузиастов из Ленинградского политехнического института, но эта работа не была завершена [62, с. 32–33].

Опыты с пороховыми двигателями показали принципиальную возможность полета реактивного летательного аппарата. Однако они не могли дать практического результата. Из-за кратковременности работы порохового РДТТ время полетов, как правило, измерялось секундами. Эксперименты часто сопровождались взрывами и пожарами.

Большее практическое значение имели работы по применению пороховых ракетных двигателей в качестве стартовых ускорителей. Если для горизонтального полета самолета было достаточно иметь тяговооруженность порядка 1/10-1/12, то для излета отношение тяги винта к весу долж- но было составлять не менее 1 /4-1/5, Это затрудняло взлет тяжело нагруженных самолетов, особенно ест и старт происходил с мягкого грунта.

Рис. 1.91. Ракетоплан немецких конструкторов, 1929 г.

Опыты по использованию пороховых ракетных двигателей в качестве вспомогательной силовой установки для облегчения взлета самолета начались в Германии и в СССР в 1929–1930 гг. В Германии по инициативе И. Винклера летом 1929 г. ракетные ускорители были установлены на крыле металлического одномоторного самолета Юнкерс W-34. Самолет был снабжен поплавковым шасси и взлет с ускорителями происходил с воды [63]. В СССР работы по созданию авиационных пороховых стартовых ускорителей возглавил В. И. Дудаков. В 1931 г. было выполнено около 100 взлетов на учебном У-1 с ускорителями (рис. 1.92), затем в 1931–1934 гг. проводились опыты по использованию ракетных ускорителей для взлета тяжелых самолетов ТБ-1. Эксперименты показали, что благодаря дополнительной силовой установке длина разбега уменьшается более, чем в 4 раза [64, с. 64–66].

Подводя итоги опытов по применению твердотопливных ракетных двигателей в авиации, С. П. Королев в докладе на Всесоюзной конференции по изучению стратосферы в 1934 г. заявил: «…если можно говорить о применении пороховых ракетных двигателей к самолетам, то только в качестве вспомогательного средства и, в первую очередь, как мощного кратковременно действующего источника силы для взлета» [65 с. 417]. Будущее подтвердило правоту этих слов.

Задача повышения мощности двигателя и ее сохранение на больших высотах возродила интерес к казалось бы давно забытому паровому авиационному двигателю. Правда, теперь говорилось уже не о поршневом двигателе, а об использовании в авиации паровой турбины. Опыт применения этого типа энергетической установки в различных областях техники показывал, что мощность установки может достигать десятков тысяч лошадиных сил, в то время как мощность двигателя внутреннего сгорания из-за ряда физико-технических ограничений (детонация топлива, жаропрочность материалов, влияние инерционных сил движущихся масс, проблема «лба» при увеличении чиста и размера цилиндров и т. д.) была ограничена величиной примерно 1000 л.с. В связи с характерной для конца 20-х — начала 30-х годов тенденцией к созданию самолетов-гигантов, мысль о применении в авиации сверхмощной паросиловой установки казалась многим очень заманчивой. В начале 30-х годов в авиационных журналах появились проекты самолетных паровых турбин, разработанные изобретателями в Германии, США, Франции, Италии [66, с. 247–305]. В Московском авиационном институте также велись работы по созданию паровой авиационной силовой установки. Однако ни один из этих замыслов не нашел применения. Реализация шеи оказалась невозможной из-за большого веса парового двигателя (напомню о необходимости запаса воды, тяжелом паровом котле) и проблемы размещения конденсатора пара, площадь которого должна была быть значительно больше, чем площадь радиатора двигателя внутреннего сгорания. Созданный в МАИ паровой двигатель при мощности 150 л.с. весил более 300 кг. Еще тяжелее оказался испытанный в США на самолете паровой двигатель братьев Беслер [9, с. 110].

Рис. 1.92. Ракетный ускоритель на самолете У-1

Несмотря на это, работы по проектированию авиационных паровых турбин не пропали даром. Опыт был использован при создании турбореактивных двигателей (ТРД). Этот тип двигателя оказался несравненно более перспективным, т. к. из-за отсутствия необходимости в системах парообразования и конденсации был намного легче, компактнее, удобнее. Преимущества ТРД перед паровой турбиной хорошо понимали и в 20-е годы, однако проблема прочности деталей в условиях высоких температур задержала его появление до конца 30-х годов.

Итак, в поисках новых форм развития самолетов конструкторы и изобретатели далеко не всегда оказывались на правильном пути. Но сам процесс поиска является необходимым условием прогресса. Хотя многие конструкторы необычных самолетов и двигателей и не создали в 20-е — 30-е годы пригодных для широкого использования образцов, в процессе экспериментов решались важные технические вопросы. Например, на первых «летающих крыльях» были отработаны вопросы управления самолетом без горизонтального оперения, опыт конструкции втулки несущего винта автожиров был с успехом использован при создании первых вертолетов, проекты паротурбинной силовой установки благоприятно повлияли на развитие ТРД. Да и сами неудачи помогали избежать в дальнейшем ошибочных направлений в развитии авиации.