6. ТЕХНИЧЕСКИЕ ЗНАНИЯ

We use cookies. Read the Privacy and Cookie Policy

6. ТЕХНИЧЕСКИЕ ЗНАНИЯ

Современное сознание прочно связало достижения научной теории с изобретениями в области техники, a технический прогресс — с прогрессом общественно-историческим. В наше время наука не только определяет промышленный прогресс, но и само развитие техники, в свою очередь, обусловливает направление научного поиска и служит развитию науки. В современном мире наукой поверяются все сферы человеческой деятельности. Между тем соединение научных теорий с техническими достижениями в промышленном производстве характерно лишь для нового времени. Производительные силы Римской империи не были столь тесно связаны с развитием техники, а технические достижения — с прикладным применением научных теорий.

Нельзя сказать, что в период Империи вовсе не использовались достижения в области техники. В практической жизни применялись различные виды техники в той мере, в какой это отвечало потребностям времени, преимущественно в градостроительстве, военном деле, при изготовлении механических и гидравлических приспособлений, при создании ирригационных сооружений и в сельском хозяйстве. Строительство общественных и частных зданий, система коммуникаций (знаменитые римские мосты и дороги), а также такие городские сооружения, как водопроводы, бани, фонтаны, цирки, амфитеатры, говорят о высоком уровне инженерного искусства, основанного на практическом применении законов механики, математики и гидравлики, использовании землемерных и строительных приспособлений. Население Рима ко II в.н. э. насчитывало приблизительно 1 млн. жителей, а все население греко-римского мира составляло около 50–60 млн. человек[159]. Городское и сельское хозяйство требовало огромных материальных и технических затрат и деятельности большого числа людей, занятых в сфере «инженерной» практики (строителей, гидрологов, дорожников, военных инженеров, а также ремесленников, работавших на заказ по найму или на рынок), в торговле и сфере обслуживания (пекарей, сапожников, скульпторов, жестянщиков, оружейников, парфюмеров, сукновалов — этим в Риме занимались специальные мужские коллегии — фуллоны), а также ряда «неблагородных» специальностей (artes non liberales). Из списка занятий, достойных свободного человека. Сенека исключал живописцев, ваятелей, мраморщиков, поваров, составителей мазей, борцов, атлетов и других, приспособивших, по его словам, свой ум к наслаждениям (Ep., 88, 18–21).

В Римской империи занятие ремеслом традиционно считалось уделом людей невежественных, а всякий оплачиваемый труд по найму или на заказ относился к ремесленной деятельности. Городские ремесленники, в свою очередь, свысока относились к сельским жителям, переселявшимся вследствие обезземеливания или других причин в города. Наряду с ремесленниками низы, жившие на раздачи императоров и частных лиц, составляли самую значительную часть городского населения[160].

Широкое применение всевозможные технические изобретения находите при устройстве зрелищных мероприятий. В цирках, амфитеатрах, на театральных подмостках использовались сложнейшие и дорогостоящие механизмы. В Колизее, строительство которого было закончено в 80 г., применялись сменные арены, которые наполнялись водой для устройства морских сражений, подъемники, хитроумные системы блоков и прочие достижения инженерно-технической мысли.

Технические знания и умение находили широкое применение в конструировании всевозможных механических диковинок, уникальных игрушек. Во введении к «Пневматике» Герон Александрийский отличает технические приспособления, «используемые для практических нужд», от приспособлений, назначение которых «производить удивление и восхищение». Механики Папп и Прокл выделяли эти технические диковинки в отдельную область механики. В «Пневматике» Герона (II, 11) описывается приспособление, представляющее собой механическую игрушку, главным элементом которой был полый шарик, установленный над сосудом с кипящей водой и приводящийся в движение силой пара, который поступал в прикрепленные к шарику полые согнутые трубки. Использование силы пара, благодаря которому осуществлялось вращение шарика, дало повод к тому, что некоторые исследователи стали называть данное приспособление «паровой турбиной» Герона. Однако назначение описанного Героном механизма было вполне определенным и служило лишь для развлечения, а вовсе не для производственного применения силы пара (что было бы неосуществимо и из-за отсутствия цилиндров)[161].

Другая сложная игрушка, описанная Героном и изображавшая театральную сцену с укрепленными на ней фигурками, приводилась в движение с помощью пара и нагретого воздуха — в результате фигурки перемещались по вращающейся под ними сценой.

По словам Витрувия, существовали разнообразные механические устройства, принцип действия которых подсмотрен у природы и которые приводились в движение благодаря силе воды или сжатому воздуху: это были игрушечные поющие дрозды, акробаты, пьющие и движущиеся фигурки, водяные органы и будильники и прочие забавы техники (X, 7).

Характерно, что Герои Александрийский, говоря о принципе устройства сифона, изложенном другими авторами, не принимает их объяснения, которое на практике не подтверждается; следовательно, заключает он, их вывод неверен (Pneumat., II, 6 sq.). В данном случае Героном используются все элементы современного подхода к эмпирически исследуемому объекту: формулирование теоретических положений, использование данных эксперимента на практике и признание неточности теоретических посылок на основании данных опыта. Свидетельства о применении методов эксперимента в науке периода Империи чрезвычайно редки, но неверно было бы утверждать, что их вовсе пе было[162]. Однако результаты технического эксперимента никогда пе рассматривались в качестве средства научного познания природы

О действительном состоянии уровня технических знаний и их применении в период Империи дают представление сочинения Витрувия «Об архитектуре», Секста Юлия Фронтина «Об акведуках», Герона Александрийского «Механика», а также свидетельства Плиния Старшего, Сенеки, Колумеллы. К началу нашей эры использовались для практических нужд следующие достижения техники в различных областях деятельности.

В строительном деле: использование «гидравлической смеси» (бетона); применение кладки из обожженного кирпича и использование кирпичной-бетонной сводчатой техники. Наивысшего расцвета архитектура и строительное дело получили при Адриане. Архитектор должен был быть сведущим не только в планировании зданий или городов, но разбираться в строительной технике, и особенно фортификационных укреплениях военного назначения. Он также должен был уметь применять на практике знание механики при изготовлении приборов для измерения времени (солнечные и водяные часы), при изготовлении грузоподъемных кранов, военных приспособлений — осадных метательных орудий и пр.

В ремесленном производстве: изобретение прозрачного стекла и развитие стеклодувного дела; мраморная облицовка общественных и частных зданий; изобретение отопительных систем и их использование в городских банях, а также в частных городских домах и загородных виллах (в термах Септимия Севера в Византии в III в. н. э. будто бы использовали в качестве топлива нефть Каспийского моря)[163].

В сельском хозяйстве: внедрение ротационной мельницы вместо зернотерки, что позволяло использовать мускульную энергию животных (ослов или мулов, реже лошадей); изобретение водяной мельницы (упоминается Страбоном — XII, 556, a описание водяной мельницы впервые встречается у Витрувия — X, 5, 2). Однако до сих пор неизвестны археологические свидетельства о водяных мельницах ранее II в. и. э. Медленное распространение водяных мельниц объясняется тем, что они были сложными в техническом отношении сооружениями, предназначенными для использования в крупных хозяйствах, и требовали значительцых денежных вложений. Наиболее известен комплекс из 16 водяных мельниц, обнаруженный в Бербигале (около Арля), датируемый серединой III в. н. э. Более широкое распространение получили мельницы, которые были открыты в Помпеях, — они были просты по устройству, приводились в движение силой животных и обслуживали небольшие хозяйства. Контраст между этим традиционным типом мельниц и водяными мельницами был разительным во всех отношениях. Наряду с традиционными канатными прессами стали использовать в период Империи винтовой пресс. Плиний Старший отмечает, что винтовой пресс был введен в последние 20 лет (XVIII, 74), хотя конструкция подобного пресса описана и у Витрувия (VI, 6, 3). Детальное описание двойного винтового пресса дано у Герона (Mech., III, 19). В середине I в. н. э. была изобретена так называемая галльская жнейка с широким плугом (Plin. NH, XVIII, 296), не нашедшая, однако, широкого применения на практике, несмотря на сравнительно высокую производительность. В землепашестве продолжали использовать царапающий плуг с небольшой глубиной запашки.

В механике: изобретение винта и шестерни; усовершенствование в связи с этим ювелирных инструментов и медицинских приборов.

В бытовой сфере: изобретение и использование стенографии (Gen. Ep., 90).

Из перечисленного видно, что, несмотря на достижения в отдельных областях техники, античная цивилизация не стала цивилизацией технической. Среди причин называют обычно ограниченное применение источников энергии (воды, ветра и пр.), даже мускульная энергия животных не использовалась в должной мере. Основным средством передвижения и перевозки тяжестей оставались бычьи упряжки, ослы и мулы. Лошадей широко не употребляли ввиду того, что не знали стремени (оно появилось только в VIII в. и. э.). Оглоблевая телега оставалась неизвестной в Риме вплоть до III в.н. э., а следствием этого была высокая стоимость и неэффективность наземного транспорта, что, в свою очередь, не способствовало развитию мануфактурного производства.

Наряду с ограниченным использованием энергетических ресурсов и неудовлетворительным состоянием наземного транспорта часто говорят о применении некачественных металлов в создании механизмов. Основными материалами в данном случае были бронза и железо. В ходу были традиционные медицинские инструменты, изготовленные из бронзы, хотя были известны более совершенные стальные, которые, тем не менее, использовались в редких случаях. Железа постоянно не хватало из-за несовершенных методов плавки, оно шло в основном на изготовление оружия и рабочего инструмента; качество железа оставляло желать лучшего, так как температуры античных способов плавки были недостаточны, весь процесс очень сложен, да и сами мастера имели о нем весьма приблизительное представление[164]. Дальнейшие открытия, связанные с обработкой железа, оставались вне технических возможностей времени. Применение железа в промышленных масштабах стало возможным гораздо позже благодаря двум последующим открытиям: повышению температур плавки и использованию коксующегося каменного угля. К перечисленным факторам можно добавить отсутствие в античный период механических часов, компаса, управляемого руля, малоэффективное использование парусных судов, низкое качество стекла, громоздкую числовую нумерацию и т. п., без которых невозможно достичь высокого уровня технического прогресса.

Знаний, которыми обладали античные специалисты в области техники, было вполне достаточно для достижения значительных результатов в сфере практического применения механизмов. Тем более удивительно, что в действительности этого не происходило[165]. Использование технических достижений в ограниченных масштабах, и в основном в непроизводственной сфере (для развлечений), объясняется особенностями общественного устройства и социальной психологией периода Римской империи (в частности, отсутствием рынка в современном смысле, погони за прибылью, поскольку целью было воспроизводство традиционных — полисных — экономических отношений; во внимание принимались не промышленные потребности, а интересы человека как части целого, окружающая природная среда в ее целостности). Определенную роль сыграла научная традиция, служившая помехой техническому развитию и отличающаяся специфическим пониманием целей научного исследования. Римскую науку в целом недостаточно интересовало прикладное применение ее результатов в сфере техники. Применение технических достижений в зрелищах, в изготовлении игрушек, предметов роскоши[166] и т. п. позволяет понять, в какой именно форме массам были доступны результаты технической мысли.