5.1. Когда была изобретена позиционная система счисления?
5.1. Когда была изобретена позиционная система счисления?
Сегодня считается, что позиционная система записи чисел была изобретена в Индии «очень давно» [821], с. 88. И затем заимствована арабами, которые наконец-то и принесли ее в средневековую Европу. Именно в Европе «арабские цифры» послужили толчком к быстрому развитию математики и вычислений во второй половине XVI — начале XVII века. В 1585 году были уже изобретены десятичные дроби [821], с. 119. Историк математики Д.Л. Стройк пишет: «Это было одним из больших усовершенствований, которые стали возможными благодаря всеобщему принятию индийско-арабской системы счисления. Другим большим усовершенствованием вычислительной техники было изобретение логарифмов» [821], с. 120. Напомним, что логарифмы были изобретены в первой половине XVII века [821], с. 120–121.
Подчеркнем, что как десятичные дроби, так и логарифмы могли появиться лишь ПОСЛЕ ВВЕДЕНИЯ ПОЗИЦИОННОЙ ДЕСЯТИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ. Причем ВСКОРЕ после, поскольку, коль скоро позиционная система счисления была внедрена, изобретение дробей и логарифмов уже не заключало в себе особой сложности. В самом деле, рассмотрим вопрос об изобретении десятичных дробей. Если мы имеем позиционную систему счисления, то перемещение любой цифры на один разряд вверх «повышает ее вес», то есть вклад этой цифры в значение записанного в позиционной системе числа, в десять раз. Для целых чисел самым младшим разрядом является разряд единиц. Естественная мысль — добавить разряды «ниже» разряда единиц по тому же правилу: перемещение цифры на разряд вниз уменьшает ее вклад в результирующее значение в десять раз. Для того чтобы сделать это, достаточно придумать разделитель целых и дробных разрядов. То есть десятичную запятую. Например, в записи числа 16,234 запятая отделяет два целых разряда от трех дробных. Вряд ли для такого изобретения потребовались СОТНИ лет, как на том настаивает скалигеровская история науки. Скорее всего, это было сделано довольно быстро, за десятки лет, вскоре после изобретения нуля и позиционной системы счисления.
Чуть более сложным, но тоже не представляющим из себя принципиальных затруднений является изобретение ДЕСЯТИЧНЫХ ЛОГАРИФМОВ — опять-таки на основе десятичной позиционной системы счисления. Дело в том, что целая часть десятичного логарифма это ДЛИНА ЗАПИСИ ЧИСЛА в позиционной десятичной системе, уменьшенная на единицу. Не трудно заметить — и это, скорее всего, было достаточно быстро сделано, — что при умножении двух натуральных чисел длины их записей, в общем-то, складываются (с точностью до единицы, которую иногда приходится вычитать). Последнее связано с тем, что при умножении чисел их логарифмы складываются, следовательно, целые части логарифмов тоже складываются с точностью до единицы. Лишняя единица возникает тогда, когда сумма дробных частей складываемых логарифмов больше или равна единице. Естественная задача для средневекового математика — уточнить характеристику, задаваемую длиной числа, таким образом, чтобы при перемножении чисел эти характеристики В ТОЧНОСТИ СКЛАДЫВАЛИСЬ. Правильное понимание идеи мгновенно приводит к понятию логарифма. Именно эту задачу и пытался решить Джон Непер при создании логарифмов в начале XVII века. Он придумал логарифмы. Сначала в несколько неуклюжей форме, но затем идея была быстро доведена до ее почти современного состояния [821], с. 121. Д.Л. Стройк сообщает, что полная таблица десятичных логарифмов целых чисел от единицы до ста тысяч была опубликована в 1627 году [821], с. 121. То есть всего лишь через 13 лет после первой работы Джона Непера на эту тему [821], с. 120–121.
Следовательно, от появления идеи позиционного десятичного счисления до создания десятичных дробей и логарифмов не могло пройти очень много времени. А поскольку логарифмы были созданы лишь в начале XVII века, то можно уверенно предположить, что распространение позиционной десятичной системы счисления началось НЕ РАНЕЕ СЕРЕДИНЫ XVI ВЕКА Н. Э. Причем на первых порах — среди математиков и вычислителей, то есть представителей сравнительно узкого круга ученых. И лишь затем эта идея проникла в общество, и ею стали пользоваться издатели, художники, школьные учителя и т. п.
Но сегодня нас хотят убедить, что в западноевропейском обществе такие далекие от математики люди, как, например, художники, свободно пользовались позиционной десятичной системой счисления уже в XV веке и даже в более ранние эпохи. Не говоря уж об индусах, которые якобы пользовались этой системой аж в 500 году до н. э. (!) [755], с. 20. Правда, как потом рассказывает нам та же скалигеровская история науки, «древние» индусы почему-то «забыли» об этих своих выдающихся математических открытиях. Но, по счастью, успели рассказать о них арабам. Которые и донесли этот светоч «древнейших знаний» до необразованной Европы. Произошло это в Средние века. Индия в это время (как, впрочем, и Европа) была погружена в мрачную эпоху средневекового невежества. По крайней мере, математического. Во всяком случае, как нам говорят сегодня, «относительно математики в Китае и в Индии мы располагаем очень ограниченным запасом сведений. Либо исчезли, ЛИБО ЕЩЕ НЕ НАЙДЕНЫ многие материальные свидетельства» [755], с. 45.
По нашему мнению, нарисованная историками картина неестественна и даже нелепа. Определить примерную дату изобретения позиционной десятичной системы счисления можно по бурному развитию и внедрению этой идеи, которое началось лишь в конце XVI века [821]. Следовательно, сама идея возникла где-то в середине XVI века, а не в глубокой древности. Нельзя отделять идею от ее прямых и ОЧЕВИДНЫХ следствий СОТНЯМИ и даже ТЫСЯЧАМИ лет. Поэтому все те «древне»-вавилонские, «древне»-индийские, «древне»-арабские и вообще «очень-очень древние» тексты, в которых использована идея позиционного десятичного счисления, не могли появиться ранее XVI века.
Это в полной мере относится и к якобы «древнейшей» КЛИНОПИСИ Двуречья. Сегодня нам говорят, будто «древние шумеры» еще в ТРЕТЬЕМ ТЫСЯЧЕЛЕТИИ ДО Н. Э. широко пользовались позиционной системой [821], с. 40. А якобы за ДВЕ ТЫСЯЧИ ЛЕТ ДО Н. Э. они уже свободно решают линейные и квадратные уравнения с двумя неизвестными. Д.Л. Стройк сообщает: «Вавилоняне времен Хаммурапи ПОЛНОСТЬЮ владели техникой решения квадратных уравнений. Они решали линейные и квадратные уравнения с двумя неизвестными, решали даже задачи, сводящиеся к кубическим и биквадратным уравнениям» [821], с. 42. А В ПЕРВОМ ТЫСЯЧЕЛЕТИИ ДО Н. Э. «древние шумеры» производят вычисления «которые доведены до СЕМНАДЦАТОГО шестидесятичного знака. СТОЛЬ СЛОЖНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ работ уже нельзя связывать с вычислением налогов или измерением, — стимулом для них были астрономические задачи» [821], с. 44.
По нашему мнению, все эти «древне»-шумерские математические высоты были достигнуты лишь в XVI–XVII или даже в ВОСЕМНАДЦАТОМ веках НАШЕЙ ЭРЫ. А отнюдь не до нашей эры, как полагают историки, основываясь на ошибочной хронологии Скалигера. Недаром даже Джон Непер, изобретатель логарифмов, «избегал операций с дробями» [755], с. 130. Хотя историки математики считают, что он производил действия с дробями «легко», тем не менее, сам факт избегания дробей весьма красноречив. И неудивителен. Поскольку, как мы видели, десятичные ДРОБИ были изобретены лишь в 1585 году, когда Джону Неперу (1550–1617) было уже 35 лет [821], с. 121. А до этого операции с дробями были громоздки и неудобны. Математики, бухгалтеры, счетоводы, астрономы XVI–XVIII веков нашей эры, жившие на территории Междуречья, по-видимому, еще не имели в достаточном количестве бумаги. Поэтому были вынуждены записывать свои вычисления на глиняных табличках. Которые быстро вышли из употребления в XVIII–XIX веках, когда здесь наконец-то появилась бумага в достаточном количестве. Затем, лет через сто, радостно заброшенные таблички были обнаружены западноевропейскими археологами. И тут же с восторгом объявлены «древнейшим свидетельством могущества допотопной шумерской науки». Расцветшей якобы в III тысячелетии до н. э. Местные жители возражать не стали.
Данный текст является ознакомительным фрагментом.