Глава 5. ЯДЕРНАЯ ВОЙНА В КОСМОСЕ 

We use cookies. Read the Privacy and Cookie Policy

Глава 5.

ЯДЕРНАЯ ВОЙНА В КОСМОСЕ 

Первый в истории высотный ядерный взрыв произвели американцы 1 августа 1958 г. над островом Джонстон в Тихом океане. Стартовав с построенной на острове пусковой установки, армейская баллистическая ракета PGM-11A «Redstone» (серийный № СС-50) подняла ядерный заряд типа W-39 на высоту 76,8 км. Заряд имел мощность 3,8 Мт, но, по-видимому, был настроен на половинную мощность (1,9 Мт). Из-за неполадки носителя взрыв произошел непосредственно над островом, а не в 32 км в стороне, как планировалось. Испытание носило кодовое наименование «Teak».

12 августа аналогичный заряд был поднят ракетой № СС-51 и подорван на высоте 42,98 км (испытание проходило под кодом «Orange»). Эти высотные взрывы мощных термоядерных зарядов проводились в рамках программы создания противоракетных систем и имели целью проверку эффективности таких зарядов в ПРО. Оба взрыва были частью операции «Newsreel».

Почти сразу после этих двух взрывов американцы приступили к проведению сверхсекретной операции «Аргус». Основной целью проведения этой операции являлось изучение влияния поражающих факторов ядерного взрыва, произведенного в условиях космического пространства, на земные радиолокаторы, системы связи и электронную аппаратуру спутников и баллистических ракет. По крайней мере, так ныне утверждают американские военные. Но это, скорее, были попутные эксперименты. А главная задача была в испытании ядерных зарядов. Кроме того, предполагалось изучить взаимодействие радиоактивных изотопов плутония, высвобождавшихся во время взрыва, с магнитным полем Земли.

Отправной точкой проведения эксперимента стала довольно эксцентричная по тем временам теория, выдвинутая сотрудником Радиационной лаборатории Лоуренса Николасом Кристофилосом. Он предположил, что наибольший военный эффект от ядерных взрывов в космосе может быть достигнут в результате создания искусственных радиационных поясов Земли, аналогичных естественным радиационным поясам (поясам Ван Аллена).

И действительно, проведенный эксперимент подтвердил выдвинутую теорию, и искусственные пояса действительно возникали после взрывов. Их обнаружили приборы американского научно-исследовательского спутника «Эксплорер-4», что позволило впоследствии говорить об операции «Аргус» как о самом масштабном научном эксперименте, который когда-либо проводился в мире.

В качестве места проведения операции была выбрана южная часть Атлантического океана между 35° и 55° ю. ш., что обуславливалось конфигурацией магнитного поля, которое в этом районе наиболее близко расположено к поверхности Земли и которое могло сыграть роль своеобразной ловушки, захватывая заряженные частицы, образованные взрывом, и удерживая их в поле. Да и высота полета ракет позволяла доставить ядерный боеприпас только в эту область магнитного поля. Кроме того, удаленность от традиционных морских путей позволяла янки надеяться на сохранение испытаний в секрете.

Для осуществления взрывов в космосе были использованы ядерные заряды типа W-25 мощностью 1,7 кт, разработанные для неуправляемой ракеты «Джин» класса «воздух — воздух». Вес самого заряда составлял 98,9 кг. Конструктивно он был выполнен в виде обтекаемого цилиндра длиной 65,5 см и диаметром 44,2 см. До операции «Аргус» заряд W-25 испытывался трижды и продемонстрировал свою надежность. Кроме того, во всех трех испытаниях мощность взрыва соответствовала номинальной, что было важно при проведении эксперимента.

В качестве средства доставки ядерного заряда была использована модифицированная баллистическая ракета Х-17А, разработанная компанией «Локхид». Ее длина с боевым зарядом составляла 13 м, диаметр — 2,1 м.

Для проведения эксперимента был сформирован отряд из девяти кораблей 2-го флота США, действовавший под обозначением совершенно секретной оперативной группы № 88.

Для запуска ракет было использовано опытное судно AVM-1 «Нор-тон-Саунд» полным водоизмещением 15 тыс. т. В 1945 г. оно было введено в строй в качестве плавбазы для гидросамолетов. Но к началу 1950-х гг. его переделали в плавучий стенд для испытаний ракет. На нем испытывали множество ракетных комплексов, включая «Регулус», «Полярис» и «Иджис».

«Нортон-Саунд» крейсировал в районе Фолклендских островов. Первое испытание было проведено 27 августа 1958 г. Точное время пуска ракеты, как и во время двух последующих экспериментов, неизвестно. Но, учитывая скорость и высоту полета ракеты, можно ориентировочно считать, что старт состоялся в интервале от 5 до 10 минут до времени взрыва, которое известно. Первый ядерный взрыв в космосе произошел в 2 ч 28 мин по Гринвичу 27 августа на высоте 161 км над точкой земной поверхности с координатами 38,5° ю. ш. и 11,5° з. д., в 1800 км юго-западнее южноафриканского порта Кейптаун.

Через три дня, 30 августа, в 3 ч 18 мин второй ядерный взрыв был произведен на высоте 292 км над точкой земной поверхности с координатами 49,5° ю. ш. и 8,2° з. д.

Последний, третий взрыв в рамках операции «Аргус», произошел 6 сентября в 22 ч 13 мин на высоте 750 км (по другим данным — 467 км) над точкой земной поверхности 48,5° ю. ш. и 9,7° з. д. Это самый высотный из космических ядерных взрывов за всю недолгую историю таких экспериментов.

Любопытно, что все взрывы в рамках операции «Аргус» являлись лишь частью проводимых экспериментов. Их сопровождали многочисленные пуски геофизических ракет с измерительной аппаратурой, которые проводились американскими учеными из различных районов земного шара непосредственно перед взрывами и спустя некоторое время после них.

Так, 27 августа были проведены пуски четырех ракет — ракеты «Джэйсон» № 1909 с мыса Канаверал в штате Флорида; двух ракет «Джэйсон» — № 1914 и № 1917 — с базы ВВС США «Рамей» в Пуэрто-Рико; ракеты «Джэйсон» № 1913 с полигона Уоллопс в штате Вирджиния. А 30—31 августа с тех же самых стартовых позиций были запущены уже девять ракет. Правда, взрыв 6 января пусками не сопровождался, но наблюдения за ионосферой велись с помощью метеорологических зондов.

Советские специалисты смогли получить информацию о первом из американских космических взрывов. В день испытания, 27 августа, с полигона Капустин Яр были проведены пуски трех геофизических ракет: одной Р-2А и двух Р-5А. Измерительной аппаратуре, установленной на ракетах, удалось зафиксировать аномалии в магнитном поле Земли.

Судя по всему, советская разведка заранее оповестила правительство о подготовке американцами испытаний ядерного оружия в космосе.

Вскоре об американских тайных испытаниях было написано в газете «Известия». Вслед за этим, 19 марта 1959 г., газета «Нью-Йорк тайме» опубликовала статью, в которой во всех подробностях было рассказано о том, чем занимались американские военные в южной части Атлантики.

Летом 1962 г. американцы решили провести новые ядерные взрывы в космосе. В ходе операции «Фишбоул» предполагалось провести взрыв ядерного заряда W-49 мощностью 1,4 Мт на высоте около 400 км. Этот эксперимент проходил у американских военных под кодовым наименованием «Старфиш» («Звездная рыба»).

Операция началась с неудачи. Состоявшийся 20 июня с площадки LE1 атолла Джонсон в Тихом океане пуск баллистической ракеты «Тор» (серийный № 193) был аварийным — на 59-й секунде полета произошло отключение двигателя ракеты. Офицер, отвечающий за безопасность полета, через шесть секунд отправил на борт команду, которая привела в действие механизм ликвидации. На высоте 10—11 км ракета была взорвана. Заряд взрывчатого вещества разрушил боеголовку без приведения в действие ядерного устройства. Часть обломков упала обратно на атолл Джонстон, другая часть — на расположенный неподалеку атолл Сэнд. Авария привела к небольшому радиоактивному заражению местности.

9 июля был проведен следующий старт «Тора», который нес боевую часть типа W-49 мощностью 1,45 Мгт. Взрыв был произведен на высоте 399 км. Сияние «рукотворного солнца» видели на острове Уэйк на расстоянии 2200 км, на атолле Кваджалейн (2600 км) и даже в Новой Зеландии, в 7000 км к югу от Джонстона.

И на сей раз советская разведка оказалась в курсе дел со «Старфишем». На охоту за «Морской звездой» 28 мая 1962 г. отправился военный спутник специального назначения «Космос-5». КА был создан специалистами ОКБ-1, которое возглавлял С.П. Королев. Вес спутника составлял около 280 кг. Бортовое оборудование должно было определить степень воздействия ядерных взрывов на радиационные пояса Земли.

«Космос-5» был выведен на вытянутую орбиту (192—1578 км) ракетой-носителем «Космос» с полигона Капустин Яр. В космосе «Космос-5» проработал 340 дней. 3 мая 1963 г. он сошел с орбиты и сгорел в плотных слоях земной атмосферы. В ходе своего полета спутник успел «увидеть» не только взрыв «Морской звезды-I», из-за которого, собственно, и смог появиться на свет, но и ряд других испытаний: американские «Checkmate» (20 октября), «Bluegill 3 Prime» (26 октября), «Kingfish» (1 ноября), «Tightrope» (4 ноября), советские «К-3» (22 октября), «К-4» (28 октября) и «К-5» (1 ноября). Все поставленные перед «Космос-5» задачи были успешно выполнены. Собранные данные позволили предусмотреть меры защиты бортового оборудования перспективных космических аппаратов.

Рассмотрев последствия ядерных взрывов в космосе, ученые обеих сверхдержав пришли к одинаковому выводу — это страшное оружие, применение которого равно создаст проблемы для обеих сторон.

В 2001 г. Управление обороны Пентагона по снижению угрозы (Defense Threat Reduce Agency, DTRA) попыталось оценить возможные последствия испытаний для низкоорбитальных спутников. Результаты оказались неутешительные: одного небольшого ядерного заряда (от 10 до 20 килотонн — как бомба, сброшенная на Хиросиму), взорванного на высоте от 125 до 300 км, «достаточно, чтобы на несколько недель или даже месяцев вывести из строя все спутники, не имеющие специальной защиты от радиации». Специалист по физике плазмы из Мэрилендского университета Денис Пападопулос имел иное мнение: «10-килотонная ядерная бомба, взорванная на специально рассчитанной высоте, может привести к потере 90% всех низкоорбитальных спутников примерно на месяц».

Согласно отчету управления, в некоторых точках околоземного пространства в результате высотного ядерного взрыва уровень радиации может увеличиться на 3—4 порядка и оставаться повышенным в течение двух лет. Все спутники, оказавшиеся в зоне с повышенным фоном, будут накапливать радиацию гораздо быстрее, чем предполагалось при проектировании, что значительно снизит быстродействие электроники и приведет к росту потребления энергии. Вероятно, в первую очередь откажет система ориентации или связи, и спутники уже не смогут выполнять свои задачи или их срок службы значительно сократится. К тому же высокий уровень радиации помешает запуску ремонтных бригад. «Пилотируемые космические полеты должны быть прекращены на год или более, пока уровень радиации не снизится», — отмечается в отчете. Подсчитано, что издержки на замену аппаратуры, выведенной из строя последствиями высотного ядерного взрыва, составят более 100 млрд. долларов. Это не считая общих экономических потерь от утраты возможностей, предоставляемых космической техникой!

Пентагон уже несколько десятилетий разрабатывает программу защиты своих космических аппаратов. Многие военные спутники были переведены на высокие орбиты, считающиеся относительно безопасными в случае ядерного взрыва. На некоторые спутники установили специальные экраны, защищающие электронику от радиации, по сути, это Фарадеевы клетки — замкнутые металлические оболочки, не пропускающие внутрь внешнее электромагнитное поле. (Обычно чувствительные элементы спутника окружают оболочкой из алюминия толщиной от 1 мм до 1 см.)

«Если сегодня противник взорвет ядерную бомбу в космосе, то США не смогут полностью избежать последствий этого взрыва. Однако в будущем, похоже, это станет возможным. Грэг Гине (Greg Ginet), руководитель проекта исследовательской лаборатории военно-воздушных сил, утверждает, что можно ликвидировать радиацию “быстрее, чем природа сама справится с возникшей проблемой”. В рамках проекта, финансируемого Управлением перспективного планирования оборонных научно-исследовательских работ США (Defense Advanced Research Project Agency, DARPA), сейчас изучается вопрос, могут ли искусственно созданные радиоволны очень низкой частоты способствовать “выдуванию” радиации из областей, где проходят низкие орбиты.

Теоретически можно создать группировки специальных спутников, которые бы генерировали низкочастотные радиоволны в непосредственной близости от радиационных поясов. Поэтому DARPA совместно с военно-воздушными силами проводит эксперименты с низкочастотными излучателями в рамках проекта HAARP (High Frequency Active Auroral Research Program — Программа активного высокочастотного исследования авроральной области) в местечке Гакона на Аляске. В HAARP ученые изучают активные образования в ионосфере и то, как можно искусственно управлять их свойствами. Проект предполагает исследования в области технологий связи с подводными лодками и другими объектами, находящимися под земной поверхностью»{96}.

22 ноября 2005 г. американская газета «The Washington Times» опубликовала статью, где говорилось, что США в высокой степени уязвимы для электромагнитного импульса (ЭМИ), который образуется при подрыве ядерного боезаряда в космосе.

В книге «На военные рельсы: десять мер, которые должна принять Америка, чтобы выжить и победить в войне за свободный мир» («War Footing: 10 Steps America Must Take to Prevail in the War for the Free World») сказано, что один-единственный ядерный заряд, доставленный баллистической ракетой и взорванный над территорией США на высоте нескольких сотен миль, стал бы «катастрофой для страны», так как вывел бы из строя все сети и объекты инфраструктуры, в которых используется электрическая энергия, включая компьютеры и телекоммуникационные системы.

«Это самая серьезная единичная угроза для нации и, безусловно, наименее известная», — сказал президент Центра политики безопасности Фрэнк Гаффни-младший, в прошлом высокопоставленный сотрудник Пентагона и один из основных авторов вышеупомянутой книги, которая включает в себя работы 34 специалистов по вопросам безопасности и разведки.

В книге утверждается, что ЭМИ ядерного взрыва воздействует на объекты рентгеновским и гамма-излучением в виде трех обособленных последовательностей импульсов, оказывающих все более сильный разрушительный эффект, для ликвидации последствий которого потребуются многие месяцы и даже годы. Повреждения незащищенных электронных систем будут необратимыми.

Опасности ЭМИ ядерного взрыва были недавно подчеркнуты в докладе специальной комиссии Конгресса США, который не привлек особенного внимания общественности, поскольку считается, что использование в будущем ЭМИ ядерного взрыва уникально для государств-изгоев вроде Северной Кореи и Ирана или некоторых других врагов Америки, в частности, «Аль-Каиды».

Из документов, которые были найдены на объектах, использовавшихся террористами в Афганистане, известно, что «Аль-Каида» стремится к обладанию ядерным оружием.

Эта организация могла бы использовать грузовое судно для запуска баллистической ракеты малой дальности над территорией США, сказано в вышеупомянутой книге, где попутно отмечается, что Северная Корея продает свой вариант ракеты «Scud», созданной на базе советской ракеты 8К14 примерно за 100 тысяч долларов США.

На недавних переговорах по северокорейской ядерной программе в Пекине Северная Корея угрожала экспортом своего ядерного оружия, а Иран уже испытал пуск ракеты «Scud» с борта судна.

Нападение с использованием ЭМИ ядерного взрыва разрушило бы национальную электрическую систему, незащищенные компьютеры и все устройства, в которых имеются микрочипы, от медицинских приборов до военных систем связи, а также вывело бы из строя электронные системы автомобилей, самолетов и все те системы, которые используются банковскими и финансовыми структурами и аварийно-спасательными службами.

«Нападение с использованием ЭМИ ядерного взрыва потенциально представляет собой высокотехнологичный способ для террористов уничтожить миллионы американцев старомодным путем, с помощью голода и болезней», — сказано в книге. «Хотя прямое физическое воздействие ЭМИ ядерного взрыва безвредно для человека, хорошо спланированное и грамотно осуществленное нападение могло бы косвенно погубить больше американцев, чем ядерный боеприпас, подорванный в нашем самом населенном городе».

Северная Корея получает сведения об ЭМИ ядерного взрыва от России, которая, как считается, работает над этой темой уже многие десятилетия. Китай, как сказано в одном недавнем докладе Пентагона, тоже разрабатывает боеприпасы на основе эффекта ЭМИ.

В книге содержится призыв принять десять мер для защиты свободного мира от целого ряда угроз XXI века, включая повышение физической защищенности инфраструктуры США от нападения с использованием ЭМИ ядерного взрыва и противодействие исламскому фашизму посредством идеологических контрпредложений.

Система противоракетной обороны, которую создает США, чтобы оградить себя и своих союзников от атак с использованием ракет дальнего действия, не слишком надежна и, скорее всего, не способна полностью защитить эти страны. Грубо говоря, если против ракеты с ядерной боеголовкой и дистанционным взрывателем применить противоракету, то этим можно спровоцировать высотный ядерный взрыв.

Американские ученые, изучающие последствия ядерных испытаний в космосе, утверждают, что ядерный взрыв в атмосфере создает быстро расширяющееся облако раскаленного газа (плазмоид), которое посылает вовне ударную волну. В то же время оно испускает во всех направлениях чудовищное количество энергии в виде теплового излучения, высокоэнергичных рентгеновских и гамма-квантов, быстрых нейтронов и ионизированных остатков самой ядерной боеголовки. Вблизи Земли атмосфера поглощает излучение, из-за чего воздух нагревается до экстремально высокой температуры. Этого достаточно, чтобы «мягко посадить» ядерное облако на Землю. Молекулы воздуха ослабляют генерацию электромагнитного импульса. Поэтому основные разрушения от ядерного взрыва, произведенного недалеко от поверхности, вызваны ударными волнами, стирающими все с лица Земли, ветрами неимоверной силы и поистине адской жарой.

Высотные ядерные взрывы (обычно более 40 км) сопровождаются совершенно другими эффектами. Поскольку они происходят практически в безвоздушном пространстве, облако плазмы расширяется гораздо быстрее и достигает большего размера, чем это было бы у поверхности, а излучение проникает гораздо дальше.

Специалист по физике плазмы из Мэрилендского университета Денис Пападопулос (К. Dennis Papadopoulos) объясняет, что возникающий при этом сильный электромагнитный импульс имеет сложную структуру. В первые несколько десятков наносекунд около 0,1% энергии, произведенной взрывом, высвечивается в виде гамма-излучения с энергией квантов от 1 до 3 МэВ (мегаэлектронвольт, единица измерения энергии). Мощный поток гамма-квантов ударяет в земную атмосферу, где они сталкиваются с молекулами воздуха и отрывают от них электроны (отскакивание электрона при столкновении с гамма-квантом физики называют эффектом Комптона). Так образуется лавина комптоновских электронов с энергиями порядка 1 МэВ, которые движутся по спиральным траекториям вдоль силовых линий магнитного поля Земли.

Создающиеся нестабильные электрические поля и токи генерируют на высоте от 30 до 50 км над поверхностью Земли электромагнитное излучение в диапазоне радиочастот от 15 до 250 МГц.

По словам Дениса Пападопулоса, для мегатонной бомбы, взорванной на высоте 200 км, диаметр излучающей области будет примерно 600 км. Высотный ЭМИ может создать разность потенциалов, достаточную, чтобы разрушить любые чувствительные электрические цепи и приборы, находящиеся на земле в пределах прямой видимости. «Но на высокой орбите поле, создаваемое ЭМИ, не так сильно и в целом создает меньше помех», — добавляет он.

Американские ученые утверждают, что, по крайней мере, 70% энерговыделения атомной бомбы приходится на электромагнитное излучение в рентгеновском диапазоне, которое, как и сопутствующее ему гамма-излучение и нейтроны с высокой энергией, проникает сквозь все предметы, встречаемые на пути. Энергия излучения уменьшается с расстоянием, поэтому спутники, находящиеся далеко от места взрыва, страдают меньше, чем оказавшиеся поблизости.

«Мягкий рентген» — рентгеновские лучи с низкой энергией, которые также образуются при высотном ядерном взрыве, — не проникает внутрь космического аппарата, но нагревает его оболочку, что может вывести из строя электронную начинку спутника. К тому же мягкий рентген разрушает покрытие солнечных батарей, значительно ухудшая их способность вырабатывать энергию, а также портит оптические поверхности датчиков положения и телескопов. Рентгеновское излучение более высокой энергии, воздействуя на спутник, вызывает образование потоков электронов, которые приводят к возникновению сильных электрических токов и напряжений, способных попросту сжечь чувствительные электросхемы.

Как считает Денис Пападопулос, ионизованное вещество самой боеголовки вступает во взаимодействие с магнитным полем Земли, которое выталкивается из области радиусом 100—200 км, и его движение приводит к возникновению низкочастотных электрических колебаний. Эти медленно осциллирующие волны отражаются от поверхности Земли и нижних слоев ионосферы, в результате чего эффективно распространяются вокруг земного шара. Несмотря на то что амплитуда электрического поля невелика (менее милливольта на метр), на больших расстояниях, например, на концах наземных или подводных линий электропередачи, может возникнуть значительное напряжение, что вызовет многочисленные пробои в электрических цепях. Именно этот эффект вызвал аварии в электрических и телефонных сетях Гавайев после эксперимента «Звездная рыба».

После проявления первых последствий взрыва на сцену выходит сам плазмоид. Это облако энергичных электронов и протонов ускоряется магнитным полем в магнитосфере Земли, в результате естественные радиационные пояса, окружающие планету, увеличатся в размерах. Кроме того, некоторые частицы «убегают» из этих областей и образуют искусственные радиационные пояса в промежутке между естественными.

Денис Пападопулос считает, что серьезной проблемой, возникающей при высотном ядерном взрыве, является то, что диэлектриками накапливается заряд, возникающий из-за обстрела спутника быстрыми электронами с энергией порядка 1 МэВ. Высокоэнергичные электроны проникают сквозь корпус или защитный кожух спутника и, тормозясь, застревают в полупроводниковых электронных элементах и солнечных батареях. Присутствие «чужаков» создает разность потенциалов там, где ее быть не должно, что ведёт к разрядке аккумуляторов и возникновению нежелательных токов, приводящих к разрушению системы. При этом, если толщина защитного экрана превышает 1 см, объясняет Денис Пападопулос, то ее эффективность снижается, поскольку в этом случае столкновение с высокоэнергичной частицей провоцирует интенсивное электромагнитное тормозное излучение (то есть излучение, возникающее при резком уменьшении скорости заряженной частицы, вызванном столкновением с другим телом).

Ларри Лонгден (Larry Longden) из компании «Maxwell Technologies», производящей защиту для искусственных спутников, утверждает, что на спутнике можно установить датчик, регистрирующий уровень радиации. При превышении допустимого предела сигналом с Земли можно будет выключить бортовой компьютер и подождать, пока снизится фон радиации.

Итак, к настоящему времени самым страшным несмертельным (для человека) оружием являются космические взрывы, способные вывести из строя все американское оружие, созданное на основе «высоких технологий». Этим еще раз подтверждается тезис о том, что создание «абсолютного» оружия, против которого нет защиты, невозможно. Вспомним соревнование бронебойного артиллерийского снаряда и брони в 1855-1918 гг.

Ну а как реагировал на американские ядерные взрывы в космосе Советский Союз?

При создании противоракетного комплекса системы «А» встал вопрос: будут ли работать радиолокационные средства ПРО в условиях взрыва спецзарядов своих противоракет? Одновременно надо было решить вопрос о возможном подавлении нашей ПРО вероятным противником путем предварительного взрыва специальной боевой части над местом расположения средств ПРО.

Для получения надежных данных по поражающему действию высотных ядерных взрывов высшими инстанциями было решено провести серию таких взрывов при пусках баллистических ракет с ядерными зарядами с полигона Капустин Яр в район полигона Сары-Шаган, где была расположена система «А».

Планирование операции «К», то есть проведение серии взрывов в космосе, было начато задолго до старта антиракеты В-1000 4 марта 1961 г. Их подготовкой и проведением занималась Государственная комиссия под председательством заместителя министра обороны СССР, генерал-полковника Александра Васильевича Герасимова. Научным руководителем экспериментов был назначен академик АН СССР Александр Николаевич Щукин.

Задачи операции «К» заключались в определении:

— поражающего действия ядерного взрыва на головную часть баллистической ракеты;

— воздействия ядерного взрыва на атмосферу;

— воздействия ядерного взрыва и возмущений в атмосфере на работу радиотехнических средств системы «А» и на процесс наведения антиракеты В-1000 на цель.

Первые взрывы, имевшие обозначения «К-1» и «К-2», были проведены в течение всего одних суток — 27 октября 1961 г. Оба боеприпаса мощностью 1,2 кг были доставлены к местам взрыва (над центром опытной системы «А» на полигоне Сары-Шаган) баллистическими ракетами Р-12 (8К63), запущенными с полигона Капустин Яр. Первый взрыв был произведен на высоте около 300 км, а второй — на высоте около 150 км.

Поскольку все документы, связанные с операцией «К», до сих пор имеют гриф «совершенно секретно», автор вынужден ссылаться лишь на воспоминания очевидцев и участников.

Главный конструктор системы противоракетной обороны (системы «А») Григорий Васильевич Кисунько в своей книге «Секретная зона»{97}писал: «Во всех указанных экспериментах высотные ядерные взрывы не вызывали каких-либо нарушений в функционировании “стрельбовой радиоэлектроники” системы “А”: радиолокаторов точного наведения, радиолиний визирования противоракет, радиолинии передачи команд на борт противоракеты, бортовой аппаратуры стабилизации и управления полетом противоракеты.

После захвата цели по целеуказаниям от РАС обнаружения “Ду-най-2” вся стрельбовая часть системы “А” четко срабатывала в штатном режиме вплоть до перехвата цели противоракетой “В-1000” — как и в отсутствие ядерного взрыва.

Совсем другая картина наблюдалась на РАС обнаружения метрового радиодиапазона “Дунай-2” и особенно ЦСО-П: после ядерного взрыва они ослеплялись помехами от ионизированных образований, возникавших в результате взрыва».

А вот воспоминания Бориса Евсеевича Чертока, находившегося 1 ноября 1962 г. на полигоне Байконур: «1 ноября [1962 г.] был ясный холодный день, дул сильный северный ветер.

На старте шла подготовка к вечернему пуску. Я забежал после обеда в домик, включил приемник, убедился в его исправности по всем диапазонам. В 14 часов 10 минут вышел на воздух из домика и стал ждать условного времени.

В 14 часов 15 минут при ярком солнце на северо-востоке вспыхнуло второе солнце. Это был ядерный взрыв в стратосфере — испытание ядерного оружия под шифром “К-5”. Вспышка длилась доли секунды. Взрыв ядерного заряда ракеты “Р-12” на высоте 60 километров проводился для проверки возможности прекращения всех видов радиосвязи. По карте до места взрыва было километров 500. Вернувшись быстро к приемнику, я убедился в эффективности ядерного эксперимента. На всех диапазонах стояла полнейшая тишина. Связь восстановилась только через час с небольшим».

Говоря о советских ядерных взрывах в космосе, стоит упомянуть о проекте Е-3, предполагавшем доставку на Луну и подрыв на ее поверхности атомного заряда.

Автором проекта Е-3 был советский физик-ядерщик академик Яков Борисович Зельдович. Основная цель проекта — доказать всему миру, что советская станция достигла поверхности Луны. Зельдович рассуждал следующим образом.

Сама по себе станция очень мала, и ее падение на лунную поверхность не сможет зафиксировать ни один земной астроном.

Даже если начинить станцию взрывчаткой, то и такой взрыв никто на Земле не заметит. А вот если взорвать на лунной поверхности атомную бомбу, то это увидит весь мир, и ни у кого больше не возникнет вопросов или сомнений.

Несмотря на многочисленных противников проекта Е-3, он все же был детально проработан, и в ОКБ-1 даже изготовили макет станции с ядерной боеголовкой. Контейнер с зарядом, как морская мина, был весь утыкан штырями взрывателей, чтобы гарантировать взрыв при любой ориентации станции в момент соприкосновения с поверхностью Луны.

Но макетом дело и закончилось. Уже на стадии эскизного проектирования ставились вполне резонные вопросы о безопасности такого пуска. Никто не брался гарантировать стопроцентную надежность доставки заряда на Луну. Если бы ракета-носитель потерпела аварию на участках работы 1-й или 2-й ступеней, то контейнер с ядерной бомбой свалился бы на территорию СССР. Если бы не сработала 3-я ступень, то падение могло бы произойти на территории других стран.

В конце концов, от проекта Е-3 отказались. Причем первым предложил это сделать сам инициатор идеи — академик Зельдович.

Позже индекс Е-3 присвоили проекту, предусматривавшему фотографирование обратной стороны Луны с большим разрешением, чем это сделала станция «Луна-3». Были осуществлены два пуска — 15 и 19 апреля 1960 г. Оба они закончились авариями, и больше пусков в рамках проекта не производилось.

В ходе операций «К-3», «К-4» и «К-5» 22 октября, 28 октября и 1 ноября 1962 г. спецзаряды мощностью в 300 кг были подорваны на высотах, соответственно, 300, 150 и 80 км.

Замечу, что время проведения испытания «К-3» было выбрано неслучайно. За двое суток до взрыва с полигона Капустин Яр был запущен искусственный спутник Земли типа ДС-А1 (псевдоним «Космос-11»), предназначенный для исследования излучений, возникающих при ядерных взрывах на больших высотах, в широком диапазоне энергий и эффективностей, отработки методов и средств обнаружения высотных ядерных взрывов и получения других данных. Информация, которую собирались получить и получили советские ученые от этого спутника, оказалась крайне важной для разработки систем вооружения следующих поколений.

Кроме того, этот взрыв в космосе можно было рассматривать и как демонстрацию советской мощи в ходе «Карибского кризиса».

Программа эксперимента «К-3» была значительно шире, чем проведенные за год до этого испытания. Кроме двух баллистических ракет Р-12 и противоракет полигона в Сары-Шагане предполагалось задействовать ряд геофизических и метеорологических ракет, а также межконтинентальную баллистическую ракету Р-9 (8К75), запуск которой должен был состояться с 13-й пусковой установки полигона Тюра-Там в рамках 2-го этапа летно-конструкторских испытаний. Головная часть этой ракеты должна была пройти максимально близко к эпицентру взрыва. При этом предполагалось исследовать надежность радиосвязи аппаратуры системы радиоуправления, оценить точность измерения параметров движения и определить влияние ядерного взрыва на уровень принимаемых сигналов на входе бортовых и наземных приемных устройств системы радиоуправления.

Но пуск Р-9 в тот день оказался неудачным. Через 2,4 секунды после старта разрушилась 1 -я камера сгорания 1-й ступени, и ракета упала в 20 м от стартового стола, серьезно его повредив.

Четвертый ядерный взрыв в рамках операции «К» был проведен 28 октября 1962 г. По сценарию этот эксперимент совпадал с предыдущим, с той разницей, что Р-9 должна была стартовать с опытной наземной пусковой установки № 5. Старт Р-12 с ядерной боеголовкой произошел в 4 ч 30 мин по Гринвичу с полигона Капустин Яр. А спустя 11 минут на высоте 150 км была проведена детонация ядерного устройства. Система «А» отработала без замечаний.

А вот пуск Р-9 с полигона Тюра-Там вновь окончился аварией. Ракета оторвалась от стартового стола в 4 ч 37 мин 17 сек по Гринвичу, но успела подняться на высоту всего 20 м, когда вышла из строя 2-я камера сгорания двигательной установки 1-й ступени. Ракета осела и упала на пусковую установку, столб пламени взметнулся высоко в небо. Таким образом, всего за шесть дней серьезные повреждения получили две пусковые установки для Р-9. Больше в испытаниях их не использовали.

А теперь дадим слово техническому руководителю испытаний по средствам «А» генералу Н.К. Остапенко: «Проведение испытаний проходило в условиях жесточайшей секретности. Достаточно сказать, что сформированная мною в Москве исследовательская экспедиция из ведущего состава ИТР по всем технологическим средствам “А” из 393-х участников (только по нашей головной организации), не считая кооперации, была перепроверена КГБ с замечаниями на замену отдельных сотрудников. По каким соображениям — мне не было известно, так как все сотрудники ОКБ-30 имели “вторую” и “первую” формы допусков. Перепроверка проходила через заместителя начальника ОКБ-30 по режиму — полковника госбезопасности Петра Алексеевича Драликова.

За время проведения операции “К” выполнено пять подрывов СБЧ (ЯБЧ) различной мощности на разных высотах. Каждый эксперимент проводился в условиях старта двух баллистических ракет Р-12 с пусковых столов полигона Кап-Яр с разрывом в старте 0,15—0,3 секунды с таким условием, чтобы вторая баллистическая ракета Р-12 практически шла по той же траектории, что и первая, а ее головная часть, несущая датчики поражающего действия, регистрировала бы параметры ядерного взрыва боевого заряда первой ракеты, укомплектованной СБЧ.

Задача средств “А” состояла в том, чтобы на фоне ядерного взрыва первой ГЧ обнаружить и сопровождать вторую БР, произвести наведение и перехват ее головной части противоракетой В-1000 “А” в телеметрическом варианте. Высота подрыва СБЧ мощностью 1,2 кг в операциях “КГ и “К2” — 300 и 150 км, в операциях “КЗ”, “К4”, “К5” — 300, 150, 80 километров при значительно больших мощностях СБЧ, чем в первых двух операциях.

В операциях участвовали перевозимые радиолокационные станции различных частотных диапазонов и назначений, связная, электронная аппаратура, сосредоточенные вдоль трассы полета БР вблизи эпицентра подрыва СБЧ. В этом же районе были размещены представители живой природы. По траектории полета работали ионосферные станции, проводились пуски метеозондов, геофизических ракет.

Успешное проведение этих операций имело громадное научное и прикладное значение для широкого спектра научных направлений и техники, включая военный аспект. В момент подрыва СБЧ на всех радиотехнических и связных средствах “А” прослушивался мгновенный треск (щелчок) за счет наводок на схемную часть радиотехнических и электронных схем без фиксации разовых сбоев.

После подрыва СБЧ станция дальнего обнаружения “Дунай-2” метрового диапазона была ослеплена ионизированными образованиями на время двадцать минут (для РЛС ЦСОП — намного больше). Этот факт заставил создателей боевой ПРО перевести РЛС дальнего обнаружения в дециметровый диапазон…

После проведения первого подрыва СБЧ в операции “К1” весь людской состав, участвовавший в эксперименте, был задержан в объектовых зданиях системы на 2—4 часа без права выхода наружу. Этот подрыв произвел на всех жителей Приозерска незабываемое впечатление. Выпустили нас только к началу ночи.

У зданий КПП объекта 40 собралось более двухсот представителей промышленности и офицерского состава. Каждый смотрел на удивительную картину ночного необычно яркого звездного неба, по которому от запада, где находился эпицентр подрыва СБЧ, на восток протянулись 24 ровных, четких, напоминающих инверсионный след от высотного реактивного самолета, полосы цвета электрик. Нас окружила зловещая тишина. Вся жизнь военного городка Приозерска замерла.

С полуострова не доносился обычный лай собак. Становилось как-то жутко, будто мы попали на другую нежилую территорию…

Через одиннадцать дней был произведен второй эксперимент с подрывом СБЧ на высоте 150 километров с тем же ядерным зарядом. На последующих операциях: “К-3”, “К-4”, “К-5” — будет увеличиваться заряд ЯВ от операции к операции. После работы мы вновь вышли поздней ночью и вновь люди вели себя так же, как и в ночь первого ядерного взрыва. Небо было таким же полосатым, зловеще красивым, необыкновенным»{98}.

Данный текст является ознакомительным фрагментом.